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Privacy-Preserving Driver Drowsiness Detection
with Spatial Self-Attention and Federated Learning

Tran Viet Khoa, Do Hai Son, Mohammad Abu Alsheikh, Yibeltal F Alem, and Dinh Thai Hoang

Abstract—Driver drowsiness is one of the main causes of
road accidents and is recognized as a leading contributor to
traffic-related fatalities. However, detecting drowsiness accurately
remains a challenging task, especially in real-world settings
where facial data from different individuals is decentralized and
highly diverse. In this paper, we propose a novel framework for
drowsiness detection that is designed to work effectively with
heterogeneous and decentralized data. Our approach develops a
new Spatial Self-Attention (SSA) mechanism integrated with a
Long Short-Term Memory (LSTM) network to better extract key
facial features and improve detection performance. To support
federated learning, we employ a Gradient Similarity Comparison
(GSC) that selects the most relevant trained models from different
operators before aggregation. This improves the accuracy and
robustness of the global model while preserving user privacy. We
also develop a customized tool that automatically processes video
data by extracting frames, detecting and cropping faces, and
applying data augmentation techniques such as rotation, flipping,
brightness adjustment, and zooming. Experimental results show
that our framework achieves a detection accuracy of 89.9% in
the federated learning settings, outperforming existing methods
under various deployment scenarios. The results demonstrate
the effectiveness of our approach in handling real-world data
variability and highlight its potential for deployment in intelligent
transportation systems to enhance road safety through early and
reliable drowsiness detection.

Index Terms—Intelligent transportation, federated learning,
and drowsiness detection.

I. INTRODUCTION

Technological advancements in transportation have signifi-
cantly improved road safety and driving efficiency, particularly
in autonomous and semi-autonomous vehicles. Various driver
assistance systems, including fatigue detection technologies,
have been developed to mitigate risks associated with human
error. Despite these improvements, driver fatigue remains a
critical factor in road accidents, contributing to 10%-20%
of serious crashes worldwide [1]. In Australia, fatigue is
recognized as one of the “fatal five” causes of road accidents,
alongside speeding, drug and alcohol impairment, failure to
wear seatbelts, and driver distraction [1].

There are two major approaches to detecting drowsiness
to reduce these risks: physiological signals and vision-based
methods [2]. Physiological signals, such as Electroencephalo-
gram (EEG) [3] and Electrocardiogram (ECG) [4], rely on
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biological signals, including brain waves and heart rate vari-
ations, to identify specific biological markers of drowsiness.
However, this approach requires complex systems to record an
individual’s biosignals, making it suitable for lab environments
but challenging to deploy in practical settings [2]. In contrast,
vision-based drowsiness detection [5] uses visual cues, such as
head position, eye movements, and mouth activities, to assess
driver fatigue. Effective drowsiness detection must identify
subtle signs of drowsiness, such as small changes in eye
behavior or facial expressions, while adapting to individual
differences and varying in-vehicle conditions. This approach
is more user-friendly and widely applied in various domains,
including in-vehicle driver assistance [6] and driver fatigue
monitoring [7]. Additionally, recent advances in machine
learning have enabled the development of robust, real-time
fatigue detection systems aimed at enhancing driver safety
and preventing accidents [8]. However, the accuracy of vision-
based methods can be influenced by factors such as back-
ground complexity, video quality, and dataset heterogeneity
across different individuals [2]. Moreover, since drowsiness-
related data is inherently distributed across various locations,
federated learning offers a promising solution. It enables
accurate detection in a decentralized setting while preserving
data privacy and minimizing network overhead by avoiding
the transfer of large datasets [9].

There are several challenges in data distribution in vision-
based drowsiness detection systems. First, due to the nature
of drivers’ faces dataset, each individual’s face is unique,
leading to heterogeneous data [9], [10]. This data can cause
deep learning models to fall into local optima, preventing
convergence and reducing accuracy [11]. This challenge be-
comes more significant in decentralized environments, where
analyzing data requires combining knowledge from multiple
deep learning models. Second, in federated learning, the
overall system accuracy can be compromised if individual
clients contribute low-quality models that have learned patterns
significantly different from those of other clients [9]. Such
inconsistencies may lead to disruptive updates during model
aggregation at the central server, ultimately degrading the
performance of the global model. This challenge is particularly
relevant in drowsiness detection, where variations in driver
behavior, environment, and recording conditions across clients
can result in highly divergent local models [9]. Third, existing
datasets are often limited in size and diversity, failing to
capture the full range of real-world driving conditions. This
lack of representativeness can hinder the generalizability of
drowsiness detection models. Moreover, each video frame
includes complex background environments, and variations in
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lighting, particularly between day and night, can significantly
degrade detection accuracy [12].

To deal with the first challenge of handling heterogeneous
facial data, our proposed framework employs SSA to empha-
size the most important features of each extracted face. By
applying an SSA mechanism, the model can focus on regions
such as the eyes and mouth, which are critical for drowsiness
detection. This approach reduces variations between images,
ensuring more consistent data. By emphasizing key facial
features, SSA improves the model’s ability to adapt to different
conditions, resulting in more reliable and accurate drowsiness
detection. To address the second challenge, we implement
GSC in the federated learning model to filter out dissimilar
learned knowledge from operators. This ensures the quality of
local models while maintaining the accuracy and robustness
of the aggregated global model. The GSC identifies which
updates are most aligned with the global learning objective,
ensuring that only meaningful updates contribute to model
improvement. By selecting gradients across operators, this
approach enhances model convergence and reduces the impact
of noisy or biased updates, leading to more stable and reliable
learning outcomes. Finally, to address the third challenge,
we build a customized frame extraction and augmentation
tool that automatically extracts frames from videos. It can
also perform face detection and extraction to remove the
background elements of the images. After that, we deploy
augmentation techniques to generate variations of the original
images, enhancing the dataset. This process not only increases
the diversity of the data but also improves the model’s ability
to recognize faces under different conditions, ensuring more
robust performance in real-world applications. Our contribu-
tions can be summarized as follows:

e We propose a novel framework for detecting driver
drowsiness that can effectively handle heterogeneous
data. This framework is capable of functioning in de-
centralized environments, ensuring its applicability in
real-world scenarios where data is often distributed and
privacy concerns are paramount.

« We develop a preprocessing tool that extracts frames from
raw video streams, performs face detection and cropping,
and applies frame augmentation techniques to increase
dataset variability and model generalization.

o We develop a highly effective federated learning-based
model integrating with GSC at the server side to select
the appropriate models from operators for aggregation.
In addition, our model employs SSA and LSTM at local
training operators to improve the accuracy of detection.
This approach ensures that the global model remains
accurate and robust, even when working with decentral-
ized and diverse data sources, while also preserving data
privacy.

o We perform extensive simulations in a real-world dataset
to evaluate our system. The results show that our model
outperforms existing methods in both centralized and
federated learning. Our proposed model can achieve up
to 89.9% accuracy with federated learning. Additionally,
our experiments demonstrate that the model can easily

adapt to new participants without prior training, making
it practical for real-world applications.

II. RELATED WORKS

There are several works trying to deal with detecting
drowsiness using computer vision. In [13], the authors use
various machine learning and deep learning models (i.e., K-
Nearest Neighbour, Naive Bayes, Logistic Regression, Deci-
sion Trees, Random Forest, XGBoost, MLP, and CNN) to
compare their performance in drowsiness detection in the
University of Texas at Arlington Real-Life Drowsiness Dataset
(UTA-RLDD). The simulation results show that the Logistic
Regression achieves the highest accuracy of up to 75.67%.
In [14], the authors introduce an isotropic self-supervised
learning with momentum contrast (IsoSSL-MoCo) model to
learn the representations of participants’ images and exploit
the complementarity of multimodal data. They propose a fu-
sion model that is pretrained by the IsoSSL-MoCo to improve
the performance of driver drowsiness detection. The simulation
results with the NTHU-DDD dataset show that their proposed
solution can achieve an accuracy of up to 93.71%. In [15], the
authors propose two models for detecting drowsiness from a
dataset. The first model (Model-A) combines YOLOv3 [16]
and LSTM, while the second model (Model-B) integrates CNN
and LSTM. The simulation results show that although Model-
A is more complex than Model-B, it achieves a lower accuracy
of 86% compared to Model-B’s 97.5%. However, Model-A
offers advantages in training efficiency over Model-B. In [17],
the authors propose using Vision Transformers (ViT) for driver
drowsiness detection. The simulation results show that their
approach achieves a test accuracy of up to 98.10% and an
average prediction time of approximately 17 ms per frame.
In [18], the authors propose an approach that pretrains the
dataset using YOLOvVS to detect and extract participants’
faces. After that, Vision Transformers are employed to detect
drowsiness. The simulation results show that their approach
can achieve an accuracy of up to 95.5%.

All the above methods focus on centralized learning where
all data is collected into a central server for analysis. However,
in practice, due to the nature of decentralisation of car-driving
environment, it is difficult to gather all data into a centralized
server without the risk of compromising data privacy. In [19],
the authors propose a federated learning approach for detecting
fatigue driving behaviors. Their method uses edge servers to
manage client data, while federated learning on cloud servers
aggregates the learned knowledge from these edge servers. The
proposed model, FedSup, enhances model sharing efficiency
and reduces communication overhead. The simulation results
show that their approach achieves an accuracy of approxi-
mately 90% in detecting fatigue driving behaviors.

We observe that many existing methods formally divide
data into training and testing datasets. However, one of the
biggest limitations in many drowsiness detection studies is
that the same participants often appear in both training and
testing datasets [20]. Specifically, all of the aforementioned
methods create training and testing datasets using different
features from the same participants. This thus allows the
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Fig. 1: The proposed system model.

learning model to learn individual-specific patterns, such as
unique facial features or eye movement behaviors. As a result,
the reported performance may not reflect how well the model
works on completely new users. Therefore, in this paper, we
consider a more practical scenario where a trained model can
be used to detect drowsiness for new participants who have
not been previously included in the training process. Recently,
the authors in [21] propose to use separating participants in
the training and testing datasets. They also employ feder-
ated learning for fatigue detection in a decentralized driving
environment. However, their primary focus is on evaluating
the impact of noise in federated learning to enhance the
privacy of drivers’ data. Although their approach uses differ-
ent participants for training and testing, it achieves limited
performance, with a maximum accuracy of approximately
70% for drowsiness detection. In this paper, we also con-
sider a decentralized driving environment while evaluating the
performance of participant separation in training and testing
datasets, but with a focus on improving detection accuracy
while maintaining data privacy. To achieve this, our model is
designed to easily adapt to new participants for drowsiness
detection. This adaptability enhances its practicality for real-
world applications, where new users may continuously join the
system. Extensive simulation results show that our proposed
model achieves an accuracy of 89.9% on the testing dataset
which includes both trained and untrained participants.

III. PROPOSED DROWSINESS DETECTION FRAMEWORK

In this paper, we propose a framework for detecting drowsi-
ness in a decentralized car-driving environment. Fig. 1 de-
scribes our proposed system model. As shown in Fig. 1, there
are N regional transport operators (operators), each collecting
data from local participants who may vary in age, gender, and
background environment.

In practice, video recordings of participants will be collected
during the experiment and subsequently reviewed by trained
operators for labeling. Each operator will carefully analyze
the videos to identify and classify the participants’ states
of alertness, marking specific time segments where signs
of drowsiness are observed. In particular, transport operator
experts can review video recordings of drivers and tag time
segments as drowsy or alert based on clear observable cues.
For example, they can mark a period as drowsy whenever
the driver shows obvious fatigue indicators, e.g., prolonged
eye closures (extended blinks beyond the normal 0.1 -0.4
second range) [22], frequent yawning, or episodes of head
nodding where the driver’s head briefly droops [23]. To keep
the labeling consistent and objective, the operators can follow
standardized guidelines, e.g., defining any blink longer than a
certain threshold (e.g., 0.4 seconds) as a drowsiness event [22],
so that each video is judged by measurable behaviors rather
than personal guesswork. This labeling process is designed to
be feasible in real operational settings, i.e., it relies only on
regular camera footage and human observation, without any
specialized medical instruments or clinical tests.

Since facial videos are sensitive data, they are not shared
across operators or networks. Furthermore, because each op-
erator only has access to a limited amount of participant
data, it becomes challenging to train accurate models locally.
To address these issues, our framework enables collaborative
model training across the operators while preserving user
privacy. This allows operators to improve the performance
of drowsiness detection models without sharing raw data.
Each operator has a storage server for managing its local
dataset, ensuring that sensitive data remains private and is
not transmitted across the network. Within each operator, to
prepare this data for training and detection, a preprocessing
tool is used to convert the recorded videos into sequences
of facial images. This includes steps such as face detection,



face extraction, and data augmentation, which are explained
in detail in Section III-A. After preprocessing, a detection
module based on SSA and LSTM is used to identify signs
of drowsiness in facial image sequences. More details about
this processing architecture can be found in Section III-B.

Due to the limited training data available in each operator,
it is essential for operators to exchange learned knowledge
to enhance detection accuracy. To address this, each operator
sends its trained model to a central analysis server (e.g., the
National Transport Authority). The central analysis server uses
the trained models from operators to compute gradients, selects
the most valuable information through gradient selection, and
aggregates it into a new global model. This global model is
then used to update the deep learning models within each
regional transport operator, enhancing their ability to detect
drowsiness. More importantly, the updated model can also be
used by new participants to detect drowsiness while driving,
improving the general adaptability and effectiveness of the
system. This decentralized learning strategy is also used in
real-world, large-scale systems. For instance, Tesla’s Autopilot
system adopts a fleet learning approach, where each vehicle
processes driving data locally and sends only summarized
model updates to a central server. This enables the global
model to improve continuously while ensuring that raw video
and sensor data remain on the vehicle [24], [25].

Overall, in this paper, we propose a novel framework that
can learn from different groups of people’s videos to detect
drowsiness with high accuracy while preserving privacy. Our
proposed framework includes three main processes as follows:
the Preprocessing Process, the SSA and Temporal Aggregation
network (SSTA) architecture, and the Federated Learning
Drowsiness Detection.

A. Preprocessing Process

We develop a tool that preprocesses video data by extracting
multiple frames from videos, detecting and extracting faces,
and augmenting frames. The processes of this tool are de-
scribed in Fig. 2. In the first step, the tool first extracts the
video into multiple frames within a predefined time window
and then performs the next processes as follows.

1) Face Detection and Extraction: First, we detect and
extract the face from a frame to support the processing model
in the next step, which focuses on detecting user drowsiness.
To do that, we integrate the face recognition framework [26]
into our tool. This framework uses the Histogram of Oriented
Gradients (HoG) [27] to capture the gradient structure of
a frame for object detection, e.g., faces. HoG operates by
computing gradient orientations and magnitudes over a frame.
Denoting a frame as F'(z,y), the gradients in the horizontal
direction G(x,y) and vertical direction G,(x,y) can be
calculated as follows [28]:

OF (z,y) _ OF(z,y)

Ge(z,y) = oz Gy(z,y) = Ty (D

where = and y are pixel positions of a frame. The gradient
magnitude M (x,y) and orientation €(z,y) are then calculated

as follows [28]:

M(x,y) = /Gal,9)? + Gy, 9)?,

e(z,y) = tan~! (W) . (2)

The frame is then divided into small spatial regions called
cells, where the gradient orientations are quantized into bins,
and a histogram of these orientations is built. The bin E; (the
value of the j-th orientation range in a histogram) is updated
as follows [27]:

Ej= Y M(z,y)v((y), ), (3)

(x,y)€Ecell

where (e, 7) is a weighting function that distributes the gradi-
ent magnitude into adjacent bins based on linear interpolation.
Each cell thus produces a histogram E¢V = [Ey, By, ... E.],
where c is the number of orientation bins per cell histogram.
The histograms from cells are grouped into spatial regions
called blocks. Suppose each block contains a cells. Then, for
block b, the concatenated histogram vector is constructed by
stacking the cell histograms [27]:

v = [g" EP, . EY) e R, @)

where E,(cb) represents the k-th bin from the collection of

cell histograms within block b. To improve robustness against
illumination changes, block normalization is applied using the
L2-norm [27]:
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where 7 is a small constant to avoid division by zero. Finally,
the normalized vectors from all blocks are concatenated to
form the global HoG feature descriptor [27]:

V/(b) —

(&)
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where L is the total number of blocks in the image. Finally, a
Support Vector Machine (SVM) classifier is used to distinguish
between face and non-face regions based on the extracted HoG
features [27]. Based on the HoG feature descriptor F/ and
the SVM classifier, the facial region is located and extracted
from the original input frame. Let us denote the original
image frame as Fing. The cropped face image used for further
processing is then defined as:

I'= Crop(Fimg); )

where Crop(-) is a function that extracts the detected face
region from the input frame Fin. This image I” serves as the
input to the facial augmentation process described in the next
subsection. Fig. 2 presents an illustration of the face detection
implemented in this tool.

2) Facial Augmentation: In vision-based object detection,
increasing the amount of training data is crucial for improv-
ing model accuracy. Facial augmentation is a widely used
technique that artificially expands the dataset by applying a
series of transformations to the original facial images. Such
transformations include flipping, rotation, scaling, cropping,
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Fig. 2: Overview of the face recognition tool, which processes video through three stages: frame extraction, face detection (to
isolate user faces and remove backgrounds), and facial augmentation to enhance dataset diversity.

and adjustments to brightness, contrast, or saturation.
Formally, let I’ € RT*XWXC denote an input image, where
H, W, and C represent the height, width, and number of
color channels, respectively. With Z representing the total
number of different augmentation transformations applied to
the original image I’, the facial augmentation applies a set

of transformation functions 7 = {Ty,T1,Ts,...,Tz} to
generate augmented images:
L=T.I), 2=012,....7 @®)

where each T, represents a specific augmentation operation
(e.g., rotation or flipping), and z = 0 means no transformation
applied to the original facial image. The augmented dataset
is thus composed of the original facial image along with its
transformed variants:

’Daug:{Io,Il,IQ,...,IZ}. (9)

By creating diverse variations of the original data, the facial
augmentation helps the model generalize better across different
scenarios, thereby enhancing robustness and accuracy during
training. Fig. 2 illustrates the augmentation process applied to
a cropped face image.

B. Proposed SSTA Architecture

The proposed SSTA architecture is described in Fig. 3. The
images are processed by an SSA block [29]. They are then
converted to vectors by a Fully Connected (FC) Layer with a
linear function. After that, continuous images are aggregated
into a Facial Features Table. Finally, a Temporal Component
with an LSTM [30] is used to analyze a series of continuous
images to create the output.

1) The SSA Block: Fig. 4 describes the SSA block [29],
which enhances focus on key facial regions in each image,
such as the eyes, mouth, and nose. First, a two-dimensional
convolutional layer (Conv2D) is applied using a filter bank to
extract visual features from the images. Let I denote the set of
training images, where ¢t € {1,...,T'} is the operator index, 4

is the image index within operator ¢, 7 is the training iteration,
and n € {1,...,N} denotes the convolutional layer index.
The input image at layer n, operator ¢, image 4, and iteration
r is represented as I ;Tt, and the corresponding output feature
map is denoted by S;Tt The output of convolutional layer n
for image ¢ at iteration r is calculated as follows [31]:

7,7 _ T,r
ni1t = Ont (Sn’,t * Bn,t)a

where 6,, ; is the activation function, (*) is the convolutional
operation, and B,, 4 is the filter bank of layer n in the operator
t. We then use two functions f(-) and g(-) to transform 7",
into two different feature spaces for attention computation with
F(S3ha) =98, and (S, ) = S} . Let P
denote the total number of spatial positions in the feature map.
The attention score between the g-th and p-th spatial locations
is computed by taking the dot product of the corresponding
feature vectors from the transformed feature spaces [32]:

Sq,p,t = f(S:{:Lt)ZQ(S:{il,t)p'

(10)

(1)

The attention weight 74, is then obtained using the
softmax function [29], [32]:

Nopt = exp(Sq,p,t)

Q,p,t — P )

Zp’:l exp(Sqp,t)

where 7, ,,: represents how much the model in the operator ¢

attends to the p-th location when synthesizing the representa-

tion for the ¢-th location. The output of the SSA block with
image ¢ of operator ¢ can be calculated as follows [32]:

P
2:-2,t =v <Z Va,p,t h(S;’:—Lt)p> )

p=1

12)

13)

where h(-) and v(-) are learnable transformations defined as
h(S) = Q48 and v(-) = Q,(:). After this layer, S}, ,
is flattened into a vector by a fully connected layer (FC),
denoted as S} 5 , = FC(S,.",, ;), where FC(-) is the function
of the fully connected layer. The SSA and FC processes are
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applied a second time to each image and repeated across

! consecutive images. Afterward, a Facial Features Table is

constructed as a sequence of training samples: S} .3, =
i+1,r i+l,r

( n+3 t Sn+3,t7 sty Sn+3,t)‘

2) The Temporal Component with an LSTM: After the Fa-
cial Features Table is generated, a Temporal Component based
on LSTM with multiple memory cells is applied to analyze
the features across sequential images more effectively [33].
The LSTM used three weight functions ® 4, ®p, and Pc.
We denote S, ,, = ConvID(S], 5 ,) as the output of the 1-
dimensional convolution layer (ConvlD), o(-) as the sigmoid
function, ¢(-) as the tanh function, hj, as the previous output
of the LSTM, dj; as the cell at state k& of LSTM. The output
of LSTM can be calculated as in the following equations [34],
[35]:

= 0’(‘I’ASSZ+4 ¢+ Ranhy),
b o(®psS, 4+ Prrhr),
cp = ¢(’I’cssn+4,t + ®crhy),
di = di-1 + a; ® cy,
hi+1 = b ® ¢(di),

where ® is the element-wise multlphcatlon of two vectors.
At operator ¢, iteration r, we denote Y as the final predicted

(14)

output of the neural network. Y: can be calculated as follows:
Y, = Softmax(FC(hiy1)). (15)

We denote Y'; as the label. We can calculate the loss using
the categorical cross-entropy loss function as follows:

M C
=N g logi g.0);

p=1g¢=1

cr = (16)

where M is the number of samples, C' is the number of clas-
sification classes, y;qi €Yy, and g);%t e f/': Using (16),
we can calculate the gradient of the framework of operator ¢
as follows:

oLy  wi —w;~
owy — op
with ;1 as the learning rate, wj as the new weight matrix of
the neural network of operator ¢ at iteration r, 'wtr_1 as the
previous weight matrix of the neural network of operator t¢.
Algorithm 1 summarizes this process.

v = (17)

Algorithm 1 Our Proposed SSTA Framework

w for fe (i,i+1) do
> Operator ¢ uses SSA with functions f(-),g(-),v(-) to
calculate S

n+2 t°

s+ Operator ¢ then uses FC(-) to calculate S77 AP

s+ end for

s Operator t uses the results of / image to create S;, 5,

« Operator ¢ then uses LSTM to calculate hy; and f/:,

7 Operator ¢ then uses labels and loss function to calculate
L and V3.

C. Federated Learning Drowsiness Detection

1) Increasing Number of Local Epochs: In federated learn-
ing, increasing the number of local training epochs in the
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FedAvg algorithm is essential. Running more local epochs
reduces the frequency of communication between operators
and the central analysis server, which helps lower the com-
munication overhead [36] and keeps a robust convergence for
the global model [37]. In this paper, we use multiple local
epochs within each global round to make our proposed model
more robust to data heterogeneity. We denote e as the number
of local epochs, the trained model (weight) w;" is sent from
operator ¢ to the central analysis server at global iteration r,
corresponding to local epochs er. In the central analysis server,
the gradient Vo can be calculated as [36]:

er er—1
Wy — Wy

I

2) Gradient Similarity Comparison: After receiving trained
models from operators, the central analysis server calculates a
gradient Vo™ for each operator as described in Fig. 5. It then
performs GSC to select suitable gradients to aggregate. To do
that, the central analysis server first calculates the pairwise
GSC matrix between operators as follows:

VaiVal,
MY 711~ —»1°
Ve[ Vel

It then calculates the average similarity of operator ¢t with
other operators as follows:

1 T
ﬁ: = TZP;u
t=1

The central analysis server then creates a threshold to define
a group of operators. We denote 6 as the similarity threshold
to define a set of valid operators:

R" = {t|p; = 0}

Vaj =Vg{ = (18)

P}, = tue{l,..,T}. (19

(20)

2y

We then can calculate the weights using the softmax func-

Algorithm 2 Our Proposed Drowsiness Detection Framework

.. while r < maximum number of iterations do

. for Vt €T do

3 Operator ¢ uses SSA and LSTM calculate Y: as in
Equation (15),

" Operator t uses f’:, its labels Y7, and categorical
cross-entropy loss function to update wy”,

s Operator ¢ sends wy" to the central analysis server.

s end for

7 The central analysis server uses wj;” from operators
to calculate Va” as in Equation (18) and p" as in
Equation (20) for each operator,

&= The central analysis server calculates R" as in Equa-
tion (21) and 47 as in Equation (22).

o  The central analysis server calculates the final aggre-
gated weight w” as in Equation (23).

o The central analysis server sends w" to all operators to
update their neural network.

1 r=r+1.

2 end while

» Operators use the optimized model to detect drowsiness.

tion and the temperature parameter 7:

exp(Py /7) : r
57 = | Seewr ot L TER
0 otherwise.

(22)

Fig. 5 describes this process. In this figure, the central
analysis server does not calculate the gradient Vo, of operator
t when the p, of operator t is smaller than 6 (p, < 0).
The gradient Vo is ignored when p, < 6 because a low
similarity score suggests that the operator’s update is different
from the others, possibly due to noise or data drift. This helps
ensure that only consistent and reliable gradients are used in
the global model aggregation. We then use Equation (22) to
calculate the final global aggregated weight as follows:

T

ro__ r,.T

w —E 07 wy,
=1

The central analysis server then sends the final global aggre-
gated weights to all operators to update the operators’ neural
networks for the next iteration. This process is continuously
repeated until reaching a predefined number of iterations. Once
this threshold is met, the system produces a final optimized
model, which can be deployed across all operators to detect
drowsiness in both existing participants and new users who
were not part of the initial training. This process is summarized
in Algorithm 2.

(23)

IV. EXPERIMENT SETUP
A. Dataset
In this paper, we use the University of Texas at Arling-
ton Real-Life Drowsiness Dataset (UTA-RLDD) [38], [39]
to evaluate the performance of our proposed framework in

comparison with other state-of-the-art models. This dataset
was developed by the University of Texas for multi-stage



drowsiness detection. The UTA-RDD dataset contains approx-
imately 30 hours of RGB video recordings, totaling 180 videos
from 48 healthy participants. Each participant contributed
three videos, one for each of the three classes: alertness, low
vigilance, and drowsiness. The videos were recorded from
various angles in diverse real-world settings and backgrounds.
All videos were recorded at an angle that ensured both eyes
were visible, with the camera positioned within arm’s length of
the participant. These instructions were designed to make the
recordings resemble videos captured in a car, where a phone
is placed in a dashboard-mounted holder while driving. Each
participant self-recorded their videos using either a smartphone
or a webcam. The frame rate remained below 30 fps, aligning
with the typical frame rates of consumer-grade cameras.

B. Evaluation Method

The confusion matrix [40], [41] is widely used to evaluate
machine learning models and is particularly effective in as-
sessing the performance of drowsiness detection [2]. In this
context, TP, TN, FP, and FN represent True Positive, True
Negative, False Positive, and False Negative, respectively. In
this paper, we evaluate model performance using key metrics
derived from the confusion matrix, namely accuracy, precision,
and recall. The accuracy of a model is calculated as follows:

TP + TN
TP+ TN +FP + FN’

In addition, we use precision and recall to evaluate the
performance of the models. Given B as the number of
classification groups (i.e., alert and drowsy), the precision is
calculated as follows:

B
.. TP,
Precision = E -
b=1

Accuracy = (24)

. (25)

TP, + FP,

Similarly, the recall of the system can be calculated as
follows:

TP,

B
Recall = ; m (26)

C. Simulation Setup

As described above, the UTA-RLDD dataset includes 48
participants, each participant is categorized into 3 classes
corresponding to drowsiness levels: alertness, low vigilance,
and drowsiness. To demonstrate that our proposed model can
efficiently work with different individuals without any prior
training, we divide the participants into training and testing
datasets. The training dataset includes 42 participants. The
testing dataset consists of 12 participants, including 6 from
the training dataset and 6 who are not included in the training
data. These 6 unseen participants are used to evaluate the
model’s performance on individuals it has not encountered
before. The training dataset is split with 80% of the data
for training and 20% for validation. The validation data is
used to evaluate the accuracy and the convergence of the
training process. In our experiment, our preprocessing tool first
extracts frames from the training videos. After that, it performs
face detection and extraction, generating a dataset containing

292,220 frames. Due to the high computational cost and time
required to process the entire dataset, we randomly use 50%
of the generated frames to perform experiments.

We consider two different scenarios, including centralized
and federated learning. The centralized learning scenario is
considered as the benmarks for our proposed FL model. In this
scenario, all participants are used to train the machine learning
models to evaluate performance. In contrast, in federated
learning scenarios, the participants are grouped into different
operators. Each operator includes a distinct set of participants,
i.e., in the case of five operators, each operator consists of
eight participants, whereas in the case of 42 operators, each
operator contains a single participant. We perform experiments
using five workstations running the Ubuntu operating system,
each equipped with a GPU. The setup includes two NVIDIA
GeForce RTX 3090, two NVIDIA RTX 6000 Ada Generation,
three NVIDIA A100, and one NVIDIA GeForce RTX 4090
graphics cards, using the PyTorch framework for computa-
tional tasks.

V. PERFORMANCE EVALUATION

We compare our proposed framework with other state-
of-the-art models to demonstrate the outperformance of our
proposed framework. We consider two different scenarios,
including the centralized and federated learning models.

A. Centralized Learning Evaluation

In the centralized learning scenario, we consider a scenario
in which a centralized server can be used to collect all training
datasets from the operator to perform a centralized training
process. This serves as a baseline to compare our proposed ap-
proach with other state-of-the-art machine learning techniques.
In particular, we evaluate the performance of our proposed
SSTA model in comparison with other state-of-the-art frame-
work such as Vision Transformer (ViT) [42], LSTM [43], Con-
volutional Neural Network (CNN) [44], Multilayer Perceptron
(MLP) [45], Decision Tree (DT) [13], K-Nearest Neighbor
(KNN) [13], Linear Regression (LR) [13], Random Forest
(RF) [13], Support Vector Machine (SVM) [13], and Extreme
Gradient Boosting (XGBoost) [13].

1) Visualization of SSA Patterns: Fig. 6 shows the output
of the CNN baseline and our proposed model after the
SSA blocks at epoch 5 (early stage of training) and epoch
200 (late stage of training), across 12 participants from the
testing dataset. To ensure diverse testing conditions, we select
participants with varying characteristics, such as participant
13 wears glasses, participant 25 whose videos are captured
at a large rotation angle, participant 12 covers his mouth
when feeling drowsy, participants 5 and 11 are in low-light
environments while in a drowsy state, and participants 12
and 22 use headphones. Compared to the CNN, our model
produces stronger activations, represented by orange to red
colors, around key facial areas such as the eyes and mouth
at both training stages. These visualizations indicate that our
model can be more effective in focusing on important facial
regions (eyes, nose, and mouth), enhancing its ability to detect
signs of drowsiness throughout the training process.



CNN Output: Attention Output: CNN Output: Attention Output:

Participant Info 5-th epoch 5-th epoch 200-th epoch 200-th epoch

Original Image

Parti;:zftnt 5, ?1$ ,’,G“ E
e A .
s B B PR
- | N

4

Participant 11,
Alert

FE Y
R Y
e ——

e
~

Participant 11,
Drowsy

-~y

‘q'
. .- .!;\"‘\
-'e

PG
g )

Participant 12,
Alert

_,,,«
i p-'
-

|
-
2

‘lz“ -

Participant 12,
Drowsy

L

i

( ;;‘
-

Participant 13,
Alert

)
| )
il <1

—
4\
| SN

TRDIE

Participant 13,
Drowsy

——g
‘4

e =

U,

=
\“\“ v /

@

©

/

Participant 22,
Alert

B3

Q
)

Participant 22,
Drowsy

- \ 3
gl » I W R S 5
S . |
&)
e

5

L

2
%)
Kl

Participant 26,
Alert

b 9

(;IJ
5
7/,
L y

Participant 26,
Drowsy

- il
e

>

) YY) .
Iﬁﬂﬂﬂ
=
f)
&

—0.100-0.075-0.050-0.025 0.000 0.025 0.050 0.075 0.100

Fig. 6: Visualization of the SSA mechanism’s output across
selected participants in the testing dataset.

2) Model Accuracy and Convergence Comparison: Fig. 7
describes the convergence and accuracy of the training process
for our proposed SSTA model compared to other DL models.
As observed, both our proposed model and the ViT achieve
convergence within the first 20 epochs. Notably, during the
training process, our proposed SSTA model converges more
rapidly and attains the highest accuracy (100%) compared to
the others. Although both CNN and ViT models achieve near-
perfect accuracy (100%) after 20 epochs, the CNN experiences
a significant drop in accuracy around epoch 10, while the MLP
stabilizes at approximately 80% accuracy after 100 epochs of
the training process. Table I shows the performance results
of our proposed SSTA model in terms of accuracy, precision,
and recall, compared to other models on the testing dataset,
which includes 6 previously untrained and 6 other trained par-
ticipants. As shown in the table, traditional machine learning
models, i.e., DT, KNN, LR, RF, SVM, XGBoost, exhibit rel-
atively poor performance, achieving accuracies ranging from
approximately 60% to 77% on the testing dataset. MLP also
demonstrates suboptimal performance, with an accuracy of
71.3%. In contrast, deep learning models such as CNN, LSTM,
and ViT perform significantly better, achieving accuracies of
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Fig. 7: Training accuracies of different centralized learning
approaches evaluated on participants from the training dataset.
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Fig. 8: The accuracies of different FL models in the case of
5 operators during the training process.

83.92%, 90.38%, and 89.32%, respectively. Notably, with the
testing dataset, our proposed SSTA model (Ours) outperforms
all other models by getting the highest accuracy, precision,
and recall of 91.83%, 91.96%, and 91.83%, respectively.

B. Federated Learning Evaluation

In this section, we consider a decentralized federated learn-
ing setting in which participants are organized into operators
for the training process. Each operator may contain one or
more participants. To evaluate the impact of clustering, we
perform experiments with 5, 10, and 42 operators. A total of
42 participants in the training dataset are randomly and equally
assigned to the operators. This results in 8 participants per
operator for 5 operators, 4 participants per operator for 10
operators, and 1 participant per operator when 42 operators
are used.

1) Comparative Analysis of Federated Strategies: Fig. 8
shows the accuracy curves during the training process of



TABLE I: Centralized mode: Performance comparison on testing dataset, including 6 trained and 6 untrained participants.
DT [13] | KNN[13]| LR [13] RF [13] | SVM[13]| XGBoost [13] | MLP [45]| CNN [44]| LSTM [43]| ViT [42] Ours
Accuracy | 71.1254 77.8734 61.2936 77.9235 64.5475 72.6672 71.3056 83.9277 90.3805 89.3219 91.8341
Precision 71.3131 77.8845 61.4571 717.9756 64.9342 72.6910 71.3168 83.9819 90.3826 89.3913 91.9607
Recall 71.1254 77.8734 61.2936 77.9235 64.5475 72.6672 71.3056 83.9277 90.3805 89.3219 91.8341
TABLE 1II: FL mode with 5 operators: Performance comparison on testing dataset, including 6 trained and 6 untrained
participants.
CNN_FedAvg | LSTM_FedAvg| ViT_FedAvg SSTA_FedAvg | SSTA_FedProx [37] Ours
Accuracy 76.5521 80.8601 81.2739 74.9849 85.1201 89.9253
Precision 77.5237 82.5897 81.2739 76.4987 85.1376 90.6377
Recall 76.5521 80.8601 81.2739 74.9849 85.1201 89.9253

different combinations of deep learning and federated learn-
ing approaches with 5 operators. The approaches include
CNN-FedAvg, LSTM-FedAvg, ViT-FedAvg, as well as SSTA-
FedAvg, SSTA-FedProx, and our proposed approach: the com-
plete SSTA with GSC (SSTA-GS). All approaches eventually
reach convergence; however, LSTM-FedAvg and ViT-FedAvg
show noticeable fluctuations, indicating their instability dur-
ing the training process. Although CNN-FedAvg appears to
converge, it experiences a significant drop in accuracy around
epoch 118, raising concerns about its reliability. In contrast,
our proposed SSTA-based approaches, when combined with
FedAvg, FedProx, or GSC, achieve more stable and consistent
convergence, suggesting improved training performance in the
5 operators setting.

Table II presents the performance of the different ap-
proaches on the testing dataset. Our proposed approach
achieves the highest results, with an accuracy of 89.92%, pre-
cision of 90.63%, and recall of 89.92%. These results are ap-
proximately 4-5% higher than those of SSTA_FedProx across
all three metrics and outperform the remaining approaches.
These results show that our model is more effective at learning
relevant patterns from the heterogeneous data, suggesting
its strong potential for real-world applications in federated
learning settings. Fig. 9 shows the classification results of our
proposed model using federated learning with 5 operators on
the testing dataset. Our model is 100% accurate in detecting
drowsiness among participants who are part of the training
dataset. The model also performs well in classifying previously
unseen participants, detecting drowsiness with 100% accuracy
in three participants and more than 90% accuracy in two
participants. The model, however, achieves a lower accuracy
of 73% in detecting drowsiness in the remaining participant,
which may be due to differences in data patterns that are
not well represented during training. This highlights the need
for more diverse training data or personalized adjustments to
improve performance for all users.

Fig. 10 shows the accuracy of different federated learning
algorithms using the SSTA model during the training pro-
cess. We compare three approaches: FedAvg, FedProx, and
our proposed approach under a scenario with 10 operators.
When the number of operators increases from 5 to 10, data
heterogeneity also increases, posing significant challenges

for federated learning. This increased heterogeneity directly
affects the stability and convergence of the training process,
as reflected in the accuracy trends over time. In particular, the
FedAvg method shows considerable fluctuations in accuracy
throughout training, indicating its instability when handling
non-IID data across multiple operators. Besides, FedProx,
designed to address some of these issues, achieves a more
stable performance than FedAvg but still experiences a sharp
drop in accuracy around epoch 85, highlighting its limitations
under high heterogeneity. In contrast, our proposed approach
consistently outperforms both baselines in terms of accuracy
and stability. The training curve of our proposed model is
smooth and stable, demonstrating strong convergence behavior
even under challenging conditions. This result highlights the
robustness of our method in handling heterogeneous data
distributions and maintaining reliable performance across a
larger number of operators. These findings confirm that our
approach offers a more effective and resilient solution for
federated learning in realistic, non-IID environments.

2) Robustness to Varying Data Heterogeneity: As men-
tioned in the previous section, increasing the number of opera-
tors also increases data heterogeneity. Fig. 11 illustrates the ac-
curacy curves when using different numbers of operators with
our proposed model during the training process. We observe
that FL with 5 operators converges the fastest, followed by 10
operators. FL. with 5 operators reaches 100% accuracy after
approximately 50 epochs. In comparison, FL with 10 operators
takes around 100 epochs to converge, while FL with 42
operators (i.e., one participant per operator) requires about 160
epochs. This demonstrates the increased complexity of training
under highly heterogeneous data conditions. While increasing
the number of operators leads to greater data heterogeneity, our
model remains effective in handling these variations, achieving
over 80% training accuracy after 160 epochs, despite a slower
convergence rate in comparison with other cases.

Table III presents the performance in terms of accuracy,
precision, and recall for different operator settings with our
proposed model on the testing dataset. FL with 5 operators
achieves the highest performance, with an accuracy of 89.92%,
precision of 90.63%, and recall of 89.92%. Even in the most
heterogeneous case with 42 operators, the model still performs
well, achieving 83% accuracy, 84.47% precision, and 83.02%
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Fig. 10: The stability during the training process of different
aggregation schemes on our SSTA network with 10 operators.

recall. These results highlight the robustness of our proposed
model across varying levels of data heterogeneity. The model’s
strong and consistent performance demonstrates its suitability
for real-world federated learning scenarios. Moreover, the
relatively small performance drop in testing accuracy in highly
heterogeneous conditions suggests that the model effectively
mitigates the adverse effects of non-IID data distributions,
which is a common challenge in practical FL applications.

3) Impact of Local Epochs on FL Performance: The num-
ber of local epochs plays a critical role in determining the
accuracy and convergence behavior of federated learning (FL),
particularly in decentralized environments with heterogeneous
data distributions [37]. Increasing the number of local epochs
allows operators to perform more local updates before com-
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Fig. 11: The accuracies of our proposed model in the training
process when the number of operators varies.

TABLE III: The stabilities of accuracies in the testing dataset
when the number of operators increases.

5 operators 10 operators | 42 operators
Accuracy 89.9253 88.6332 83.0204
Precision 90.6377 88.6692 84.4740
Recall 89.9253 88.6332 83.0204

municating with the central analysis server, which can be
beneficial in reducing communication overhead and improving
model personalization [36]. However, when local datasets are
highly heterogeneous, excessively increasing the number of
local epochs can lead to overfitting on local data and cause
operator models to converge to local optima. This divergence
in local updates may negatively impact the global model’s
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Fig. 12: The accuracies of the proposed SSTA model in the
training process while varying the number of local epochs.

ability to converge effectively. Nevertheless, prior studies have
shown that selecting an appropriate number of local epochs
can improve overall model performance while maintaining
stable convergence [37].

In this section, we evaluate the impact of varying the
number of local epochs on the stability of the training pro-
cess. Fig. 12 illustrates the effects of different local epoch
settings (1, 2, 5, and 10) on training performance in a
federated learning scenario. The curve corresponding to 1
local epoch demonstrates slower convergence, likely due to
insufficient local training that leads to high communication
frequency with limited improvement per round. In contrast, the
model with 5 local epochs converges significantly faster and
achieves superior performance, indicating an effective balance
between local update depth and global model alignment. On
the other hand, using 10 local epochs introduces instability
and noticeable fluctuations in the learning curve, suggesting
overfitting to local data and difficulty in achieving coherent
global aggregation.

Based on these empirical results, we adopt 5 local epochs
as the optimal setting for all experiments in this study. This
choice offers a practical trade-off between communication
efficiency, model convergence speed, and global accuracy in
the presence of non-IID data.

VI. CONCLUSION

In this paper, we developed a novel framework for driver
drowsiness detection in decentralized environments with het-
erogeneous facial data. To improve detection accuracy, we
combined an SSA mechanism with an LSTM network, helping
the model focus on important facial features across different
individuals. Moreover, we integrated the GSC into our model
to support federated learning, allowing the system to select and
combine models from similar client clusters. This improves
both the accuracy and robustness of the final global model.
Additionally, we built a preprocessing tool that can perform
frame extraction from videos, face detection and extraction,

and frame augmentation to enhance the data quality of the
dataset. Extensive simulations demonstrate that our approach
outperforms existing methods in both accuracy and com-
putational efficiency. Furthermore, by enabling decentralized
learning without compromising performance, our framework
enhances data privacy, making it well-suited for real-world
applications in intelligent transportation systems.
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