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Abstract—Subspace tracking is a fundamental problem
in signal processing, where the goal is to estimate and
track the underlying subspace that spans a sequence
of data streams over time. In high-dimensional settings,
data samples are often corrupted by non-Gaussian noises
and may exhibit sparsity. This paper explores the alpha
divergence for sparse subspace estimation and tracking, of-
fering robustness to data corruption. The proposed method
outperforms the state-of-the-art robust subspace tracking
methods while achieving a low computational complexity
and memory storage. Several experiments are conducted to
demonstrate its effectiveness in robust subspace tracking
and direction-of-arrival (DOA) estimation.

Index Terms—Sparse subspace estimation, Sparse sub-
space tracking, robust estimation, data corruption, non-
Gaussian, outliers, α-divergence.

I. INTRODUCTION

With the ubiquity of big data streams, modern on-
line applications are continuously generating massive
volumes of high-velocity data [1]. The dynamic and
evolving nature of such data streams presents signifi-
cant challenges for conventional data mining techniques,
which often assume access to static or batch data. In
many scenarios, data samples arrive sequentially, and it is
desirable to update subspace estimates in (near) real time
without revisiting old observations. Subspace tracking
(ST) addresses this need by estimating and continuously
updating a low-dimensional subspace that captures the
underlying structure of streaming data [2].

Modern data are often incomplete, unreliable, or cor-
rupted due to collection processes, inconsistencies, the
presence of non-Gaussian noise, and sparse outliers [3].
High dimensionality further exacerbates these issues by
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increasing computational and memory demands, while
also degrading algorithmic performance. A principled
and effective way to mitigate these challenges is to
exploit the empirical observation that high-dimensional
data streams often lie near a low-dimensional and sparse
subspace that can evolve over time [4], [5]. In the
presense of data corruption, the classical subspace track-
ing problem naturally extends to the more general and
challenging task of robust sparse subspace tracking.

Several ST algorithms have been proposed in recent
years to address the challenges posed by data corrup-
tion [5]. Broadly, these methods fall into two categories:
(ii) algorithms designed to handle outliers and missing
data, and (ii) algorithms designed to cope with abrupt
or impulsive noise. The first category includes several
notable approaches such as Grassmannian-based methods
(e.g., GROUSE [6], GRASTA [7], pROST [8]), recur-
sive least squares-based methods (e.g., PETRELS [9],
PETRELS-ADMM [10], PETRELS-CFAR [11]), recur-
sive projected compressive sensing-based methods (e.g.,
ReProCS’s variants [12]–[14]), and adaptive projected
subgradient methods (e.g., [15]–[17]). Although these
approaches are effective in handling outliers and missing
entries, they typically rely on the assumption of slowly
varying subspaces over time, making them less robust to
abrupt changes or impulsive noise.

The second group includes robust variants of the
Projection Approximation Subspace Tracking (PAST) al-
gorithm (RPAST [18], MCC-PAST [19], TRPAST [20]);
robust variants of adaptive or online power iteration
methods (e.g., αFAPI [21], ROBUSTQR [22]); adaptive
Kalman filtering (KFVM [23]), weighted recursive least-
squares method (e.g., ROBUSTA [11]). These methods
are designed to deal with impulsive noise but are gen-
erally sensitive to sparse corruptions and missing data.
It is also worth noting that the aforementioned methods
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TABLE I: Conventional Notations

x,x,X,X scalar, vector, matrix, and set/support
xi or x(i) i-th entry of x
xij or X(i, j) (i, j)-th entry of X
X(i, ∶), X(∶, j) i-th row and j-th column of X
X⊺,X−1 transpose, inverse of X
QR(X) QR decomposition of X
∥ ⋅ ∥F Frobenius norm
tr{⋅} trace operator
E{⋅} expectation operator
N(µ,σ2) Gaussian distribution with mean µ and

variance σ2

Dα{g∥f} α-divergence between two distributions g
and f

are not inherently designed for sparse subspace tracking.
In the literature, only few sparse ST methods have
been proposed. Notable examples include OIST [24],
OVBSL [25], and OPIT [26]. However, these methods
are not specifically designed to handle data corruption,
particularly non-Gaussian noise. This limitation moti-
vates the development of a new sparse subspace tracking
algorithm that can both exploit sparsity in the subspace
structure and maintain robustness against various types of
data corruption. In this paper, we introduce αOPIT, an
robust version of OPIT that leverages an α-divergence
based weighting scheme for sparse subspace tracking
with data corruption. Specifically, our method adaptively
downweights anomalous/corrupted observations using α-
divergence, thereby enhancing its robustness against
outliers and non-Gaussian noise. Additionally, αOPIT
incorporates a recursive covariance and hence subspace
update with a forgetting factor, allowing for efficient
online adaptation to evolving subspaces in streaming
data. Experimental results indicate that αOPIT consis-
tently outperforms existing subspace tracking algorithms,
particularly under challenging conditions involving non-
Gaussian and impulsive noise, offering robustness and
improved tracking accuracy.

Paper Organization: The rest of this paper is organized
as follows. Section II provides background on subspace
tracking, the OPIT algorithm, and α-divergence. Section
III introduces our proposed method. Section IV presents
the experimental results, and Section V concludes the
paper. For easy reference, Table I summarizes frequently
used notations in this paper.

II. BACKGROUND

In this section, we begin by formulating the problem
of robust subspace tracking, followed by a brief overview
of the classical OPIT method. We then introduce the α-

divergence, which is employed to develop a weighting
scheme that mitigates the influence of corrupted data.

A. Subspace Tracking
Assume that at each time t, we collect a data sample

xt ∈ Rn which is generated under the following model
xt =Awt + νt, t = 1,2, . . . , T. (1)

Here, A ∈ Rn×r is the underlying subspace matrix with
r < n, wt ∈ Rr is a weight vector, and ℓt = Awt repre-
sents the low-rank component of xt. The vector νt ∈ Rn

denotes data corruption present in the observation. The
problem of subspace tracking can be stated as follows:

Subspace Tracking Problem: On the arrival of a
new data sample xt at each time t, our goal is to
estimate the underlying subspace A that spans the
low-rank components {ℓi}ti=1.

When the subspace matrix A is sparse, robust ST be-
comes robust sparse subspace tracking (SST) problem.1

B. OPIT Method
Online Power Iteration by Thresholding (OPIT) offers

a fast method for tracking the underlying sparse subspace
of data streams over time [26]. It builds upon the standard
Power Iteration (PI) method for computing the dominant
eigenvectors of the covariance matrix Ct = E{xtx

⊺
t }.

Particularly at the k-th iteration, PI updates

Sℓ ←CtUℓ−1, Uℓ
Q-factor← QR(Sℓ), (2)

where QR(⋅) denotes the QR factorization [2]. PI starts
from an initial matrix U0 ∈ Rn×r and returns an orthonor-
mal matrix Uℓ, where L is the number of iterations. OPIT
modifies PI by recurisvely updating the “scaled” version
of Ct and introducing a forgetting factor 0 < β ≤ 1 to
exponentially discount the effect of old observations

Rt = βRt−1 + xtx
⊺
t , (3)

where Ct = t−1Rt. According, OPIT rewrites the first
step of (2) as follows

St =RtUt−1 = βRt−1Ut−1 + xtz
⊺
t , (4)

where zt = U⊺t−1xt. As small perturbations do not sig-
nificantly affect the performance of power methods [27,
Proposition 2], OPIT derives the following rule

St ≃ βSt−1Et−1 + xtz
⊺
t , (5)

where Et−1 = U⊺t−1Ut−2. After that, OPIT employs
the threholding operation on (5) before employing the

1In nonstationary environments, the subspace matrix A can be
slowly varying with time, i.e., A =At. Our method not only estimates
it accurately but also effectively tracks its variation over time. See
Fig. 2 for an illustration.



Algorithm 1: THRESHOLDING - Ŝ = τ(S, k)
Input: Matrix S and a thresholding factor k
Main Procedure:
[n, r] = size(S)
for i = 1,2, . . . , r do

si = S(∶, i)
Select the set Tt that contains indices of k

strongest entries (w.r.t. absolute value) of si

Form Ŝ(j, i) = {si(j) if j ∈ Tt
0 if j /∈ Tt

end
End

QR factorization of St, see Algorithm 1. We refer the
readers to our work [26] for further details. Since OPIT
is not inherently designed to handle data corruption, we
incorporate the α-divergence (introduced in the following
subsection) to enhance its robustness.

C. Alpha Divergence
The α-divergence is a family of measures used to

quantify the difference between two probability distribu-
tions [28]. Particularly given two distributions g(θ) and
f(θ), its α-divergence Dα{g ∥ f} is defined as

Dα{g ∥ f} =
1

α(1 − α) [∫ g(θ)αf(θ)1−α dθ − 1] , (6)

where 0 < α < 1 is a tunable parameter to con-
trol the asymmetry of the divergence.2 Here, (6)
can be considered as a generalization of the well-
known Kullback–Leibler (KL) divergence. In particular,
limα→1Dα(g ∥ f) = KL(g ∥ f) and limα→0Dα(g ∥ f) =
KL(f ∥ g). The α divergence can offer robustness to
several types of non-Gaussian noises which is exploited
in the next section.

III. PROPOSED METHOD

In this section, we introduce a novel robust variant
of OPIT, called αOPIT, which is designed to enhance
OPIT’s robustness and effectiveness against data cor-
ruption. The proposed method incorporates advanced
weighting and subspace estimation techniques derived
from α-divergence and OPIT, allowing it to handle non-
Gaussian noise and high-dimensional settings. In what
follows, we detail how α-divergence is incorporated into
OPIT to improve its robustness.

Following the robust statistical approach for sample
covariance estimation proposed in [21], we first modify
the “scaled” covariance matrix (3) as follows

Rt = (1 − λ)Rt−1 + λωtxtx
⊺
t , (7)

2In the literature, there exist some other forms of α-divergence,
see [28] for more details.

Algorithm 2: αOPIT - ONLINE POWER ITERATION BY

THRESHOLDING WITH α DIVERGENCE

Input: {xt}Tt=1,xt ∈ Rn, rank r, a forgetting factor
0 ≤ λ ≤ 1, alpha divergence with parameter
0 < α < 1, 0 < p ≤ 2, and a thresholding factor k:

k = {⌊(1 − ωsparse)n⌉ if ωsparse is given,
⌊10r logn⌉ if ωsparse is unknown,

where ωsparse is the sparsity level of the subspace.
Initialization:

Any U0 ∈ Rn×r , S0 = 0n×r, and E0 = Ir×r
Main Procedure:

for t = 1,2, . . . , T do
wt =U⊺t−1xt O(nr)
et = xt −Ut−1wt O(nr)
ωt = exp ( −

1 − α
2
∥et∥pF ) O(n)

St = (1 − λ)St−1Et−1 + λωtxtw
⊺

t O(nr2 + nr)
Ŝt = τ(St, k) O(nr + rk log k)
Ut = QR(Ŝt) O(nr2)
Et =U⊺t−1Ut O(nr2)

end
End
Output: UT

where 1−λ plays the same role as to the forgetting factor
β and the weight ωt is chosen as

ωt = exp(−
1 − α
2
∥xt −Ut−1U

⊺
t−1xt∥

p

F
) , (8)

with 0 < α < 1 and 0 < p ≤ 2. Here, Ut−1 denotes the pre-
vious estimate of the subspace matrix A at time t−1. The
residual between the data observation and its projection
is defined as ∥et∥F = ∥xt−Ut−1U

⊺
t−1xt∥F . See Fig. 1 for

an illustration. A large residual suggests that xt may not
lie within the current subspace and could be a corrupted
data sample. In such cases, the corresponding weight ωt

becomes small (close to zero), reducing the influence of
the corrupted data. Conversely, as the residual approaches
zero, ωt approaches 1, indicating that the data sample is
clean and should fully contribute to the subspace update.

The use of the weight ωt in (8) is motivated from
the following observation. The signal model (1) implies
the empirical distribution g(x,U) of data samples is a
mixture of a true one f(x,U) (corresponding to the low-
rank signal) and a contaminated component, i.e.,

g(x,U) = (1 − δ)f(x,U) + δh(x), (9)
where h(x) represents impulsive or non-Gaussian noises
and 0 < δ < 1 is denotes a trade-off parameter be-
tween two distributions. Accordingly, the α divergence
Dα(g(x,U)∥f(x,U)) provides a robust estimation cri-
terion for estimating the underlying subspace as follows

A = argmin
U

Dα{g(x,U)∥f(x,U)}. (10)

Since g(x,U) is generally unknown in practice, the work
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Fig. 1: The weight ωt is computed based on α di-
vergence with p = 2. When the residual is large, ωt

approaches zero; conversely, when the residual is small,
ωt approaches one.

[20] indicated that, in such cases, (10) reduces to

A = argmax
U

1

1 − α
t

∑
k=1

f(xk,U)1−α. (11)

As indicated in our companion work [21], (11) is ap-
proximately equivalent to

A = argmin
U

t

∑
k=1

ω̃k ∥xk −UU⊺xk∥
2

F
, with (12)

ω̃k = exp(−
1 − α
2
∥xk −Uk−1U

⊺
k−1xk∥

2

F
) . (13)

In parallel, minimizing a weighted least-square objective
function with a weight ω̃k results in the principal sub-
space of the weighted covariance matrix Ck = Ck−1 +
ω̃kxkx

⊺
k. As a result, we can adopt the form (8) to set

the weight ωt in (7). The inclusion of p ≤ 2 . Accordingly,
we reformulate the main step (4) of the classical OPIT
as follows

St = (1 − λ)St−1Et−1 + λωtxtw
⊺
t . (14)

Other steps of αOPIT can be given in Algorithm 2.
Complexity Analysis: αOPIT shares the same compu-

tational complexity and memory storage as the classical
OPIT method. Specifically, its overall computational cost
is O(nr2) flops. The cost for each step of αOPIT is
provided in details in Algorithm 2. In terms of memory
storage, αOPIT requires a total of 2nr + r2 words of
memory to save Ut,St, and Et at each iteration.

IV. EXPERIMENTS

This section presents several experiments conducted to
investigate the performance of αOPIT. Its effectiveness
is evaluated in comparison with several state-of-the-art
ST algorithms, including αFAPI, TRPAST, ROBUSTA,
and OPIT.
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Fig. 2: Experiment setup: data dimension n = 200, true
rank r = 5, number of data samples T = 2000, time-
varying factor εt = 10−2, subspace sparsity 80%, the
alpha divergence with α = 0.9.

A. Robust Sparse Subspace Tracking

The signal samples {xt}t≥1 are generated based on the
data model (1) where A = At is a slowly time-varying
sparse subspace matrix, generated recursively as follows

At =Ω⊛ (At−1 + εtVt), (15)



where Ω ∈ Rn×r is a binary matrix indicating the sparsity
level of the subspace matrix, and Vt ∈ Rn×r is Gaussian
noise with zero mean and unit variance. The parameter
εt ≥ 0 controls the level of subspace variation at each
time step t. The vector wt ∈ Rr denotes the coefficient
vector. The vector νt ∈ Rn accounts for non-Gaussian
noises. In our experiments, we consider the following
three cases for the noise νt:

νt(i) ∼ (1 − δ)N(0, σ2
n) + δLaplace(µ, γ), (16)

νt(i) ∼ (1 − δ)N(0, σ2
n) + δCauchy(µ, γ), (17)

νt(i) ∼ (1 − δ)N(0, σ2
n)

+ δ

2
Laplace(µ, γ) + δ

2
Cauchy(µ, γ), (18)

where δ represents the proportion of corrupted data, and
their probability density functions are given by

N(x;µ,σ2
n) =

1√
2πσ2

n

exp( − (x − µ)
2

2σ2
n

), (19)

Laplace(x;µ, γ) = 1

2γ
exp( − ∣x − µ∣

γ
), (20)

Cauchy(x;µ, γ) = 1

πγ [1 + (x − µ
γ
)
2

]
. (21)

Furthermore, two abrupt changes are made at t = 1000
and t = 1500 to evaluate the robustness of all ST
algorithms.

To measure the accuracy of subspace tracking al-
gorithms, we use the subspace estimation performance
(SEP) metric, defined as follows.

SEP (Utrue,Uest) =
tr{U⊺est(I −UtrueU

⊺
true)Uest}

tr{U⊺est(UtrueU
⊺
true)Uest}

.

The lower SEP indicates the better algorithm perfor-
mance. Fig. 2 illustrates the performance of all subspace
tracking algorithms across three case studies involving
non-Gaussian noise. As demonstrated, our method con-
sistently outperforms other state-of-the-art robust sub-
space tracking methods in all settings. In particular,
ROBUSTA and TRPAST are sensitive to both Laplace
and Cauchy noise. Although OPIT performs well under
Laplace noise, it exhibits performance degradation during
abrupt changes at t = 1000 and t = 1500 and struggles
with Cauchy noise. αFAPI can handle both types of
corruption. However, its estimation accuracy is lower
than that of our proposed method.

B. Direction-of-arrival (DOA) Tracking
We further evaluate the performance of the proposed

αOPIT algorithm in the context of direction-of-arrival
(DOA) estimation for wireless communication systems.

0 200 400 600 800 1000
-0.4

-0.2

0

0.2

0.4

0.6

Source #1,#2,#3

Fig. 3: DOA tracking setup: n = 20 sensors, r = 3 signal
sources, and T = 1000 data samples. Alpha divergence
with α = 0.9 is used. The three underlying DOAs consist
of a linear source (#1), a sawtooth source (#2) and a
sinusoidal source (#3), illustrated by ( ).

Assume that the received signal at each time t follows
the data model

xt =Atst + νt. (22)
Here, At = [a(ω1,t),a(ω2,t), . . . ,a(ωK,t)] is the time-
varying steering matrix whose column is defined as

a(ωk,t) = [1, exp(jωk,t), . . . , exp(j(n − 1)ωk,t)]
⊺
,

where ωk,t = π sin θk,t denotes the angular frequency
associated with the DOA of the k-th user. The vector st
represents the user signal, modeled as a complex Gaus-
sian random vector with covariance matrix Cs = IK . The
noise vector νt follows the mixed distribution (17) de-
scribed in the previous task of robust subspace tracking.

The main objective is to estimate the DOAs from the
corrupted observations xt. To this end, αOPIT is applied
to recursively and robustly estimate the underlying signal
subspace. Once the subspace is obtained, the ESPRIT
algorithm [29] is applied to extract angular frequencies
ωk(t), and thus recover the DOAs θk(t).

The experimental results in Fig. 3 demonstrate that
αOPIT achieves high accuracy in DOA estimation under
non-Gaussian noise conditions. Compared to existing
algorithms such as ROBUSTA, TRPAST, and αFAPI,
our method consistently offers superior robustness for
the DOA tracking task. Notably, in scenarios where the
angular frequency θ changes fast (e.g., source #1 or
source #2 at t = 400 and t = 800), αOPIT adapts more
quickly and tracks the variations more accurately than
the competing methods.

V. CONCLUSIONS

In this paper, we addressed the problem of robust
subspace tracking with data corruption. We proposed



a novel robust and adaptive algorithm, called αOPIT,
for tracking the principal sparse subspace of streaming
data over time. Experimental results demonstrated that
αOPIT effectively handles various types of data con-
tamination and consistently outperforms existing sub-
space tracking algorithms. Future works will explore its
performance in high-dimensional settings and fast time-
varying cases. In addition, when handling higher-order
streaming data, subspace tracking naturally extends to
tensor tracking [30]. Therefore, exploring robust tensor
tracking through α-divergence is a promising direction
for future research.
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