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Abstract—With the ever-increasing popularity of blockchain
applications, securing blockchain networks plays a critical role
in these cyber systems. In this paper, we first study cyberattacks
(e.g., flooding of transactions, brute pass) in blockchain networks
and then propose an efficient collaborative cyberattack detection
model to protect blockchain networks. Specifically, we deploy a
blockchain network in our laboratory to build a new dataset
including both normal and attack traffic data. The main aim of
this dataset is to generate actual attack data from different nodes
in the blockchain network that can be used to train and test
blockchain attack detection models. We then propose a real-time
collaborative learning model that enables nodes in the network
to share learning knowledge without disclosing their private data,
thereby significantly enhancing system performance for the whole
network. The extensive simulation and real-time experimental
results show that our proposed detection model can detect attacks
in the blockchain network with an accuracy of up to 97%.

Keywords- Cyberattack detection, blockchain, distributed
machine learning, deep learning, and cybersecurity.

I. INTRODUCTION

Blockchain has been emerging as one of the breakthrough
technologies for data management in recent years. The most
popular blockchain application named Bitcoin [1] was intro-
duced in 2008 with a tight series of blocks in a chain. After
data are stored in the chain, they are immutable, secured,
and transparent to all mining nodes in a blockchain network.
With different outstanding features such as immutability, de-
centralization, and fault tolerance [2], a number of blockchain-
based applications are introduced to our daily lives such as
finance, smart cities, logistics, and healthcare [2]. However,
in recent years, these applications have been reported to be a
victim of different cyberattacks. For example, in 2020, a cryp-
tocurrency exchange in Singapore named Kucoin was attacked
and lost $281 million [3]. Moreover, different reports showed
that cyberattacks on various blockchain platforms have been
increasing in recent years [3]. In different attacks, hackers tried
to exploit flaws in blockchain applications (e.g., the processing
of a mining node with null transactions or a weak password) to
attack the users and affect the working of systems. As a result,
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it is an urgent need to find effective solutions to detect attacks
in blockchain networks.

Machine Learning (ML) has been considered a promising
solution that can effectively detect various types of attacks
with high accuracy in different networks such as Internet
of Things (IoT), edge computing, and cloud computing [4].
However, there are only a few works applying ML to deal
with cyberattacks in blockchain networks. In particular, in [5]
the authors first set up an experiment using a real blockchain
node. They then use an attack device to perform Eclipse and
DoS attacks on that node to collect a cyberattack dataset.
The simulation results show that an autoencoder deep learning
model can be used to detect attacks with an accuracy of
99%. In [6], the authors propose a model using Long Short-
Term Memory Network (LSTM) to better learn the behavior
of the network in normal situations using public and private
datasets. They also propose to use Conditional Generative
Adversarial Networks (CGAN) to create new attack data from
normal behavior in the dataset. The simulation results show
that the ML methods can detect attacks with an accuracy of
93%. Moreover, in [7], the authors perform simulations on an
Ethereum network and propose a Recurrent Neural Network
(RNN) model to detect Link Flood Attack (LFA) which can
achieve an accuracy of 99%.

Despite the advantage of high accuracy in attack detection,
the current ML approaches are still facing a number of chal-
lenges. First, lacking synthetic datasets from laboratories is one
of the major challenges for all the ML-based solutions [8].
A few recent approaches have been proposed to address this
challenge. In [5], the authors collect traffic data from the
public Bitcoin network and use them as normal network data.
Then, they simulate and generate attack traffic data in the
laboratory. Unlike [5], the authors in [6] use CGAN to create
artificial attacks from normal network data. However, using
actual blockchain traffic network data as normal data may
contain noise data and/or attack data insight. Therefore, such
data might make ML models trained improperly, leading to low
performance for intrusion detection systems. In addition, the
artificial attacks may not truly reflect the properties of actual
attacks in practice, leading to ineffective training processes
for ML models. Moreover, while blockchain networks are
decentralized in nature, all of the current intrusion detection
approaches [5][6][7] are based on the centralized learning
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model (i.e., data are connected and trained at a centralized
node). This requires distributed nodes to send their local data to
the centralized server, causing privacy concerns and excessive
network overhead problems.

In this paper, to address the problem of lacking data for
training ML models in blockchain networks, we first set up a
private Ethereum network in our laboratory to build a new
dataset, called Blockchain Network Attack Traffic (BNaT),
which includes both normal and cyberattack data. We then
generate various types of attacks with clean samples (i.e., data
without error, duplicate, and corruption), which can be used
to train ML models. We then propose a real-time collabora-
tive learning model that can be deployed in a decentralized
manner to effectively detect attacks in the blockchain network.
Specifically, each node can train its data locally using a deep
belief network before sharing the trained model with other
nodes in the blockchain network to enhance the accuracy of
attack detection. In this case, all the nodes can quickly learn
the “knowledge” (i.e., via trained models) from other nodes in
the network without the need of gathering raw data from all
the blockchain nodes in the network for the training process
like conventional centralized learning models. Both real-time
experiments and extensive simulations show that our proposed
approach can outperform other baseline learning models (i.e.,
centralized learning and individual learning) with an accuracy
of up to 97%.

II. SYSTEM MODEL

In a blockchain network, mining nodes (or full nodes)
are distributed in various geographical areas. Each mining
node takes responsibility for gathering and verifying incoming
transactions before the verified transactions can be stored in
blocks in the main chain. As a result, mining nodes become
the main target of attacks in the blockchain network. It was
reported that Kucoin was attacked by Brute Pass and lost $281
million. In addition, Bitfinex was also attacked by Denial of
Service and had to shut down its service to recover. Therefore,
detecting attacks to prevent and protect the blockchain network
at the mining nodes is a crucial mission for the sustainable
development of blockchain networks.

In this paper, we propose a real-time collaborative cyber-
attack detection model that can support mining nodes to de-
tect incoming attacks. Our proposed collaborative cyberattack
detection in the blockchain network is described in Fig. 1.
In this model, there are L mining nodes joining the mining
processes of a blockchain network. Each mining node uses
local private data to train its deep neural learning model (local
learning model). The local private data is the labeled data that
a mining node possesses for its data training process. However,
the amount of data and the number of attacks on each local
dataset is usually limited, and thus it may dramatically affect
the accuracy of the learning process. Therefore, in this work,
we propose a collaborative machine learning model which
can help the mining nodes to learn knowledge from other
nodes in the networks without the need of sharing their own

private datasets. Unlike federated learning models [9] where
we need to maintain a centralized node to collect the trained
models from all the learning nodes in the network to aggregate
and distribute the global model, our proposed collaborative
learning model enables the mining nodes to be able to share and
learn locally without a need of using the centralized node. In
particular, when a mining node obtains its local trained model
by training its local data, it will share its model with all other
nodes in the network. Once a node receives all the trained
models from other nodes in the network, it can aggregate the
global model and use this model to update its local trained
model. After that, this node will use the updated trained model
to continue training its local data. This process is repeated
continuously until the iteration reaches a predefined number
or the global model is converged.

III. COLLABORATIVE CYBERATTACK DETECTION IN
BLOCKCHAIN NETWORKS

A. The Collaborative Classification Learning Model

Unlike other deep neural networks (e.g., autoencoder deep
neural networks), our proposed Deep Belief Network (DBN)
uses energy function to optimize its Restricted Boltzmann
Machine (RBM) and Gaussian Restricted Boltzmann Machines
(GRBM) layers. Thus, the DBN network can be optimized in
each layer, and it is more appropriate to classify different types
of attacks.

The architecture of a DBN is illustrated in Fig. 2. We
denote [ € {1,..., L} as the number of mining nodes in the
blockchain network. In addition, h! and v' are the hidden and
visible layers of the GRBM and RBM in the neural network
of mining node ! (MN-), respectively. The numbers of hidden
and visible layers of GRBM in this neural network are G and
P, respectively. We denote vi, and hé as the visible layer-p and
hidden layer-g of MN-I. The energy function of GRBM [10]
in the neural network of MN-! is calculated:
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where bll,p and bl2, , are the bias parameters, wé o 1s the weight

parameter between the visible layer and hidden layer, and
v1,p indicates the standard deviation of the visible layer. From
the energy functions in equation (1), we can calculate the
probability that v' is used in the MN-I:
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From the equation (2), we can calculate the gradient of
GRBM layers using the expectation value (.) [10]:
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Fig. 1: Our proposed collaborative cyberattack detection model. The detection modules are first trained by their local data. They
are then used to detect attacks for incoming traffic of blockchain networks before putting them into the mining nodes.
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Fig. 2: The architecture of a DBN. This architecture includes
multiple GRBM and RBM layers for classifying blockchain
network traffic.

where <plG7p7 , is the gradient of a GRBM layer. This gradient
can be calculated:
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After that, we denote the number of hidden and visible
layers of RBM in the neural network of MN-/ as G* and P*,
respectively. We can calculate the energy function of RBM [10]
in the neural network of MN-/:
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Similar to GRBM, we can calculate the gradient of RBM
layers in the MN-/ as follows:
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After processing at the GRBM and RBM layers, the last
layer (i.e., the output layer) is used to process data and present
the results. To do this, we use the softmax function at the output
layer to classify the network behavior based on the processed
data after GRBM and RBM. We denote X}, W7, b/ as the
output data of RBM and GRBM layers, the weight matrix and
bias between the last hidden layer and output layer at MN-
[, respectively. Additionally, we denote v = {0,...,U} as the
group number of the output. The probability for an output Y
to be classified in group w of the MN-I:

VQPR P9 dataset model’

&Y =ul X7, W7, b)) = softmax(W7], b)), (8)
and the output prediction Y'; that has probability &/ is:
Y= argmaxléf (V = ul X[, Wi6). (9

The gradient of the last hidden layers and the output can be
calculated:
o (Y *U|XlaWzvbz)
The total gradient Vi, of the DBN in MN-/ can be calcu-

lated using the results of equations (3), (6) and (10). The total
gradient of the DBN in MN-/ can be calculated:

Vo, =

(10)

(1)

At each iteration, the DBN of MN-/ can calculate its gradient
V; and send it to other nodes to calculate the average gradient.
When a node receives (L — 1) gradients from other nodes, the
average gradient can be calculated [11]:
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Vi = Vol + Vel + Vi

(12)



Algorithm 1 Learning process of the proposed model

1. while 7 < predefined iterations do

2 for Vie L do

3 X is put into the DBN of MN-/ to create Y.

& Calculate V¢; and send it to other mining nodes.

s end for

s  Bach node receives L — 1 trained models from other
mining nodes.

2 Each node calculates V¢'.

s =1+ 1.

o Each node calculates a new global model ®,,; and
updates its local model.

0: end while

i Each node uses the global model ®,; to predict Y; from

incoming transactions X.

We denote ©; as the global model at iteration i. Here, € is
the learning rate. Based on the results in equation (12), we can
calculate the global model at the next iteration:

©i11 =0, +eVy'. (13)

Finally, each mining node can use ®;,; as a new global
model. The DBN of each mining node then uses this global
model to update its parameters. We denote W, as the
weight parameters between the last hidden layer and the output
layer of the global model. The final output of DBN can be
calculated:

Y, = arg max[gl* (Y = U|X;<7 W*Global» bl*)]a (14)

Based on equation (14), the deep learning model in each
mining node can classify the behavior of the network, e.g.,
normal or a type of attack. In summary, Algorithm 1 describes
the learning process of our proposed real-time collaborative
cyberattack detection model.

B. Evaluation Methods

In this paper, we use the confusion matrix [12] to evaluate
our proposed model. The accuracy, precision, and recall of the
confusion matrix have been widely used to evaluate the per-
formance of models, especially deep learning models because
it provides a comprehensive view to evaluate the output results
with the labels. We denote TP as “True Positive”, FP as “False
Positive”, TN as “True Negative”, and FN as “False Negative”.
Given U number of classes of network behavior (normal and
different types of attacks), the accuracy of systems can be
calculated as follows:

U
1 TP, + TN,
ACC = = .
U uz::l TP, + TN, + FP, + FN,,

15)

IV. EXPERIMENT SETUP AND ATTACK DATASET
COLLECTION

A. Experiment Setup

Real-world cyberattacks at the network layer of blockchain
networks usually try to disrupt peer-to-peer connections or
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Fig. 3: Experiment setup in our laboratory. This experiment
includes three Ethereum nodes and three servers in a network.

target the weakness of consensus mechanisms to steal users’
digital assets (i.e., coins, tokens, NFT). Hence, our experiments
focus on three kinds of cyberattacks that have been reported for
severe financial loss in the laboratory environment as follows:

o Brute-force Password (BP): Blockchain wallets are usu-
ally secured with users’ passwords. Hackers can use the
traditional cyberattack as BP to scan the wallet password.
In detail, if users’ wallet passwords are not strong enough
(e.g., not including upper and special characters), hackers
can quickly retry the password until they find the correct
one. KuCoin [3] lost up to $281 million due to such
attacks in 2020.

e Denial of Service (DoS): Blockchain nodes can be easily
attacked by DoS attacks. When hackers send a massive
amount of traffic to target blockchain nodes from botnets,
these nodes will not be able to receive blockchain transac-
tions, mining or even be stopped. In 2018, two DoS attacks
happened consecutively, and they caused Bitfinex [13] to
shut down temporarily.

e Flooding of Transactions (FoT): Blockchain blocks can
only contain a certain number of transactions [14]. Hack-
ers can send a large number of null transactions to
slow down the confirmation of honest transactions. In the
real world, 115,000 transactions were unconfirmed in the
Bitcoin network in 2017, which led to $700 million being
lost [15].

In order to capture the dataset, we set up a private Ethereum
blockchain network in our laboratory as shown in Fig. 3.
This network includes three Geth clients [16] as Ethereum
blockchain nodes and three servers. The servers receive trans-
actions and send them to the Ethereum blockchain nodes for
the mining process. We also use a server to perform attacks on
this Ethereum blockchain network to collect attack data. By
using collected data for training, our model can be extended to
use with other types of attacks.

B. Attack Dataset Collection

At each node, network traffic data of four states are captured,
which include the normal state (Class 1), and three attack
states, i.e., BP attack (Class 2), DoS attack (Class 3), and FoT
attack (Class 4). In a normal network, traffic data often scatters



TABLE I: The number of samples of dataset (BNAT) collected
in our laboratory.

Class

Normal BP DoS FoT
Ethereum node (Class 1) | (Class 2) | (Class 3) | (Class 4)
Node 1 (samples) 30,000 3,000 3,000 3,000
Node 2 (samples) 30,000 3,000 3,000 3,000
Node 3 (samples) 30,000 3,000 3,000 3,000
Total (samples) 90,000 9,000 9,000 9,000
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Fig. 4: Visualization using PCA for collected datasets.

on different port numbers of the node’s operating system.
However, the traffic of Ethereum is always on fixed ports that
were set up when initializing the Ethereum node. Table I shows
the number of samples in each class of our dataset. Fig. 4
shows the visualization of the collected dataset using Principal
Component Analysis (PCA) with the three most important
features. We can observe in this figure that the visualization
of DoS attack samples is quite separated from the other states
of the network (i.e., normal, BP, FoT). However, in the 3D
view as shown in Fig. 4(d), when we combine datasets from
all the nodes, all attack states are overlapped with normal state
points. This makes more challenges in classifying normal and
attack traffic data when both types of data are mixed.

C. Simulation Results

After collecting the dataset, we implement experiments to
evaluate the performance of the proposed collaborative cy-
berattack detection model in comparison with other learning
models. In these experiments, each network has its own col-
lected dataset, and this dataset is separated into a training
group and a testing group. Besides, each network also has a
DBN to classify the dataset. However, this DBN can work in
different scenarios of the experiments. In detail, we consider
the following schemes for evaluation:

Accuracy
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Fig. 5: The convergence of learning models in three schemes.

o Centralized Learning Model (CLM): This is an upper-
bound baseline solution when we assume that there exists
one centralized node that can gather training data of all
nodes in the blockchain network. After that, to make fair
comparisons, we use a DBN to train all the data at the
centralized node. The trained DBN is then used to evaluate
the accuracy in detecting attacks. This will be used as an
upper-bound benchmark to compare with our proposed
approach.

e Local Learning Model (LLM): In this baseline, we assume
that the nodes are not cooperative, and they train their
DBN locally based on their own data. The trained DBNs
are then used to evaluate the accuracy in detecting attacks.

1) Convergence analysis: Fig. 5 describes the convergence
of learning rates of three different schemes, i.e., our Proposed
Collaborative Learning Model (PCLM), Centralized Learning
Model (CLM), and Local Learning Model (LLM). We can
observe that the CLM can quickly reach convergence after only
400 epochs. In addition, the accuracy of CLM is much higher
than that of the ILM, i.e., 96.91% v.s. 92.9%, respectively. The
reason is that the CLM has more training data than that of the
LLM. Our proposed model converges after 700 epochs, which
is a bit longer than those of the other models because it needs
time to exchange knowledge among the nodes. Interestingly,
although it does not need to maintain a centralized node to
collect all the data in the network to train, its accuracy in
detecting attacks is very close to that of the CLM, i.e., 96.72%
vs 96.91%, respectively.

2) Performance evaluation: Table II describes the simu-
lation results with two and three nodes in the blockchain
network. In this table, we evaluate the performance based
on the confusion matrix, i.e., accuracy, precision, and recall.
Overall, the accuracy, precision, and recall of both the PCLM
and CLM are very close and much higher than those of the
LLM. When the number of mining nodes increases from two
to three, the accuracy of LLM seems unchanged and keeps
stable at around 91%. However, there still has a big gap in
the precision of three nodes from 68-80%. In contrast, the
accuracy, precision, and recall of PCLM and CLM are still
stable and keep high at about 97.24%, 94.31%, and 94.49%,
respectively. These results show that PCLM can leverage the
learning knowledge of the neural network in other networks to



TABLE II: Simulation results.

Model 2 Nodes 3 Nodes
PCLM CLM LLM PCLM CLM LLM
Node T | Node 2 | Node 1 [ Node 2 | Node I | Node 2 | Node 1 | Node 2 | Node 3 | Node 1 | Node 2 [ Node 3 | Node 1 | Node 2 [ Node 3
Accuracy 96.679 96.722 96.756 96.919 90.927 92.932 97.081 97.056 97.248 97.432 97.350 97.466 90.462 91.939 90.244
Precision 93.271 93.287 93.117 93.471 68.904 82.245 94.037 93.973 94.318 94.805 94.584 94.845 68.296 80.185 74.737
Recall 93.359 93.444 93.513 93.838 81.855 85.863 94.162 94.111 94.496 94.863 94.701 94.932 80.923 83.860 80.487
TABLE III: Real-time experimental results.
Model 2 Nodes 3 Nodes
PCLM CLM PCLM CLM
Node 1 | Node 2 | Node 1 | Node 2 | Node 1 | Node 2 | Node 3 | Node 1 | Node 2 | Node 3
Accuracy 93.354 95.507 93.317 92.795 94.565 96.012 93.701 94.279 96.164 92.887
Precision 85.657 91.852 90.840 89.711 88.127 93.515 79.683 87.916 92.787 76.194
Recall 86.709 91.015 86.634 85.589 89.130 92.023 87.401 88.558 92.328 85.774
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