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Abstract—This article aims to study intrusion attacks and
then develop a novel cyberattack detection framework to detect
cyberattacks at the network layer (e.g., Brute Password and
Flooding of Transactions) of blockchain networks. Specifically,
we first design and implement a blockchain network in our
laboratory. This blockchain network will serve two purposes,
i.e., to generate the real traffic data (including both normal data
and attack data) for our learning models and to implement real-
time experiments to evaluate the performance of our proposed
intrusion detection framework. To the best of our knowledge,
this is the first dataset that is synthesized in a laboratory for
cyberattacks in a blockchain network. We then propose a novel
collaborative learning model that allows efficient deployment in
the blockchain network to detect attacks. The main idea of the
proposed learning model is to enable blockchain nodes to actively
collect data, learn the knowledge from data using the Deep Belief
Network, and then share the knowledge learned from its data
with other blockchain nodes in the network. In this way, we can
not only leverage the knowledge from all the nodes in the network
but also do not need to gather all raw data for training at a
centralized node like conventional centralized learning solutions.
Such a framework can also avoid the risk of exposing local data’s
privacy as well as excessive network overhead/congestion. Both
intensive simulations and real-time experiments clearly show
that our proposed intrusion detection framework can achieve
an accuracy of up to 98.6% in detecting attacks.

Index Terms—Blockchain, deep learning, collaborative learn-
ing, cyberattack detection, intrusion detection.
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BLOCKCHAIN [1]–[3] has been emerging as a novel
technology in storing and managing data with many

advantages over conventional data management systems. In
particular, unlike traditional centralized data management so-
lutions, blockchain technology allows data to be stored in a
distributed manner across multiple nodes. In this way, data can
be accessed and processed simultaneously at multiple nodes,
thus avoiding the problem of bottlenecks and single point of
failure. More importantly, one of the most important features
of blockchain technology is to enable data to be stored in
blocks, and once a block of data is verified and placed in the
chain, it cannot be modified and/or deleted. In this way, the
data’s integrity can be protected thanks to outstanding features
of blockchain, e.g., decentralization, immutability, auditability,
and fault tolerance [2]. As a result, there are more and more
applications of blockchain technology in our lives including
finance, healthcare, logistics, and IoT systems [2]–[5].

Due to the rapid success with a wide range of applications
in most areas, especially in money transfer and cryptocurrency,
blockchain-based systems have been becoming targets of many
new-generation cyberattacks. For example, in September 2020,
KuCoin, a crypto exchange based in Singapore, announced
that its system was hacked and the hackers stole over $281
million worth of coins and tokens [6]. In May 2019, Binance,
one of the biggest cryptocurrency exchange companies in the
world, was reported to be hit by a major security incident.
In particular, the hackers did break the exchange’s security
system and withdraw over 7,000 bitcoins from digital wallets,
causing a total loss of approximately $40 million for the
customers [6]. Most recently, in January 2022, Chainalysis
reported that North Korean hackers performed seven attacks on
cryptocurrency platforms and stole nearly $400 million from
digital assets in 2021 [7]. Although most current attacks target
on virtual money exchange systems, a number of blockchain
applications in critical areas such as healthcare [8] and food
supply chains [9] could be potential for attackers in the near
future. If these attacks happen, they not only cause huge losses
on our assets but can also lead to many serious issues related
to human health and lives. Therefore, solutions to detect and
prevent attacks in blockchain networks are becoming more
urgent than ever.

In network security, authentication methods (e.g., two-factor
authentication and biometric technology) are used to verify
and identify authorized users. By implementing authentication
methods, we can ensure that only authorized individuals or
entities can gain access to their systems or resources. However,
it is worth noting that authentication methods, despite their
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benefits, are inefficient in preventing attacks in blockchain
networks. For example, authentication methods cannot detect
and prevent Flooding of Transactions (FoT) and Brute Pass-
word (BP) attacks that are among the most common attacks in
blockchain networks. In this case, intrusion detection systems
can be employed to identify anomalous actions, including
unauthorized commands or the execution of malicious scripts,
even after a user has been authenticated. By incorporating
intrusion detection systems alongside authentication methods,
we can better protect the system’s security against cyberat-
tacks [10]. Several studies have been conducted to detect BP,
FoT, or Man in the Middle (MitM) attacks on blockchain
networks [11]–[13]. In [11], the authors performed BP at-
tacks in their testbed with different devices (i.e., MacBook
Pro, MacBook Air, Mobile phone, and Raspberry Pi). After
that, they could detect BP attacks based on abnormally high
memory and CPU consumption. In [12], the authors explored
the ledger of Monero blockchain network over a period of one
month. They analyzed network capacity, block size, portion
of empty blocks, etc., to point out how attackers earn profit
through an FoT attack. The authors in [13] proposed a method
to detect MitM attacks based on blockchain technology for
photovoltaic (PV) systems. They used a smart contract that
stores control commands before and after transmission. They
then compared these control command values to detect MitM
attacks. However, these methods only focus on a specific
type of attack or are applicable after attacks have already
caused damage. Machine Learning (ML) has been being
considered the most effective solution to detect cyberattacks
in intrusion detection systems with high accuracies [14]–[16].
The main reasons for the outstanding advantages of using
ML for intrusion detection problems compared with other
conventional detection methods such as signature-based and
abnormally-based are threefold. First, unlike conventional in-
trusion detection solutions which are usually designed to detect
a specific type of attack (e.g., virus, trojan, spam, and botnet),
ML solutions allow to detect many types of attacks at the
same time with high accuracies. For example, Deep Learning
(DL) allows to detect cyberattacks in industrial automation and
control systems (e.g., denial of service, reconnaissance, naive
malicious response injection, and complex malicious response
injection) with an accuracy of up to 97.5% [17]. Second,
while traditional solutions are often designed to detect known
attacks, ML allows to detect attacks that have never been
detected and reported before. For example, in [18], the authors
showed that their DL model can detect attacks such as the
DDoS attack of Mirai and BASHLITE botnets, even though
such types of attacks have never been learned/trained before by
this model. Last but not least, ML algorithms, especially DL,
can be deployed effectively, quickly and flexibly. For example,
after a deep neural network is trained, it can be deployed in
different intrusion detection systems at the same time to detect
cyberattacks quickly with high accuracies. In addition, when
data about new types of attacks is available, we can easily
update new versions of deep neural networks through transfer
learning techniques [19].

As a result, ML has been being considered a highly-effective
solution to detect cyberattacks for blockchain networks [20].

In particular, in [21], the authors proposed to use Random
Forest and XGBoost to detect attacks in a blockchain-based
IoT system. The results showed that this solution can identify
different types of attacks and normal behaviors with an accu-
racy of up to 99%. However, they only tested their results
on the BoT-IoT dataset that is not real blockchain traffic.
Similarly, in [22], the authors proposed an ML-based method,
called bidirectional long short-term memory (BiLSTM) to
detect attacks in an IoT network before the data is stored in
the blockchain network. Although the results also showed that
they can detect different kinds of attacks with an accuracy of
up to 99%, they were validated only on conventional network
datasets such as UNSW-NB15 and BoT-IoT datasets. These
datasets were collected in conventional computer networks and
thus cannot reflect actual traffic in blockchain networks. In
particular, these datasets have just general attacks in computer
networks without specific attacks in blockchains, e.g., changes
in blockchain transactions, incorrect consensus protocol, and
breaking the chain of blocks.

To the best of our knowledge, there are only few works that
consider using the real blockchain traffic, e.g., try to generate
artificial data or try to create data to simulate an attack for
blockchain networks to train ML models such as [23]–[25].
Specifically, in [23] the authors proposed a method to collect
blockchain traffic data. First, they captured traffic samples
from a public Bitcoin node and used them as the normal
network data. Then, for the malicious traffic data, the authors
performed DoS and Eclipse attacks on a target device (this
device was created to become a node in the Bitcoin network).
After that, the collected data was used to train an autoencoder
deep learning model. This solution showed an accuracy of
attack detection up to 99%. In [24], the authors used a public
dataset and a private dataset from their testbed. Then, they
proposed to use a Long Short-Term Memory Network (LSTM)
to learn the properties of normal samples in the datasets.
After that, they deployed a Condition Generative Adversarial
Networks (CGAN) model to generate the artificial Low-rate
Distributed DoS (LDDoS) attack samples for their blockchain
dataset. The results showed the accuracy of classification up to
93%. In addition, in [25], the authors performed a DDoS attack
namely Link Flood Attack (LFA) on a simulation Ethereum
network and collected the traceroute records of the network
in both normal and attack behaviors. After that, the authors
used the Recurrent Neural Network (RNN) to analyze the
traceroute records to identify the attacks in the network. The
results showed that the attack detection rate can achieve nearly
99%. In [26], the authors developed a framework based on
blockchain to detect only one specific attack, i.e., replay
attacks, for a power system. Moreover, in [27], the authors
proposed using blockchain and the Support Vector Machine
(SVM) to detect cyberattacks for multimicrogrid systems.
Thus, we develop a decentralized learning model that can
detect different types of attacks (i.e., Denial of Service (DoS),
BP, and FoT) for blockchain-based systems.

From all the above works and others in the literature, we can
observe two main challenges for ML-based intrusion detection
systems in blockchain networks which still have not been
addressed. In particular, the first challenge is the lack of
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synthetic data from laboratories for training ML models. Most
of the current works, e.g., [21] and [22] used conventional
cybersecurity datasets (e.g., UNSW-NB15 and BoT-IoT) to
train data. However, these datasets were not designed for
blockchain networks, and thus they are not appropriate to use
in intrusion detection systems in blockchain networks. Other
works, e.g., [23]–[25], tried to build their own datasets for
blockchain networks, e.g., by obtaining the normal samples
from the Bitcoin network [23], creating simulation experiment
to detect the LFA [25] and generating artificial attack samples
by CGAN [24]. However, these methods have several issues.
First, normal samples of transactions from the Bitcoin network
may include attacks from the public blockchain network, but
all collected data was classified and labeled to be normal data.
Second, the simulation experiment in [25] was to generate
traceroute records only for the LFA so they cannot extend
to other attacks. Furthermore, it is difficult to evaluate the
effects of artificial attack samples in [24] whether they can
simulate a real attack on a blockchain network or not. Another
challenge we can observe here is that all of the current ML-
based intrusion detection solutions for blockchain networks are
based on centralized learning models, i.e., all data is collected
at a centralized node for training and detection. However,
this solution is not suitable to deploy in blockchains as they
are decentralized networks. Specifically, nodes in blockchain
networks may have different data to train, and due to privacy
concerns, they may not want to share their raw data with a
centralized node (or other nodes) for training processes. It is
noted that the raw data means the network traffic data of a local
network. This data can be classified into normal or attack data,
that will be used for the learning process. It usually contains
sensitive information (e.g., cryptographic keys, usage ports, or
local network bandwidth) that the node does not want to share
with other nodes in the network. Moreover, sending a huge
amount of data to the network will not only cause excessive
network traffic but also risk compromising the data integrity
of blockchain networks.

This article aims to address the aforementioned challenges
by first introducing a novel intrusion detection dataset named
BNaT which stands for Blockchain Network Attack Traffic,
created from a real blockchain network in our laboratory and
then proposing an effective decentralized collaborative ma-
chine learning framework to detect intrusions in the blockchain
network. Specifically, to develop BNaT, we first set up a
blockchain network in our laboratory using Ethereum (an
open-source blockchain software) and perform intensive ex-
periments to generate blockchain data (including both normal
and malicious traffic data). The main objectives of producing
BNaT dataset are fourfold. Firstly, we collect the BNaT in a
laboratory environment to have “clean” data samples (i.e., to
ensure that the obtained data is not corrupted, error and/or
irrelevant), which is especially important for training ML
models. Secondly, the BNaT can be easily extended to include
new kinds of blockchain attacks, e.g., 51% or double spending
attacks. Thirdly, we perform experiments with real attacks in
the considered blockchain network, and thus the BNaT can
reflect better the actual attack behavior of the network than
simulations or by artificial attack data generated by GAN

in the literature, e.g., [24]. Fourthly, we collect the data in
different blockchain nodes to have a complete view of the
effects when the attacks are performed in a decentralized
manner. After that, we develop a highly-effective collaborative
learning model to make it more effective in deploying in
blockchain networks to detect attacks. In particular, in our
proposed learning model, working nodes in the blockchain
network (e.g., fullnodes) can be used as learning nodes to
collect blockchain network data (e.g., observing its incoming
traffic and classifying data). Our proposed model aims to
leverage knowledge learned from all the nodes in the network
in a decentralized manner yet without revealing their raw data
(i.e., training datasets with labels). To do so, we first design a
framework in the decentralized blockchain network in which
each participated learning node (i.e., fullnode in the blockchain
network) deploys a deep learning model (we will explain more
details in the next section) to learn from its collected data and
then share its trained model with a Centralized Server (CS).
The CS can be a bootnode or any fullnode in the blockchain
network. The CS will then aggregate all the trained models
and send the aggregated model (i.e., the global model) back
to the participated learning nodes. By repeating this process,
the learning nodes can gradually update their deep learning
models and finally reach convergence (to the global training
model). In this way, we can not only improve the accuracy
of detecting cyberattacks in blockchain networks but also
eliminate the risks of exposing local data of learning nodes
over the network. Our proposed model can achieve an accuracy
of up to 98.6% in detecting cyberattacks in the considered
network. Moreover, in our proposed learning model, even
though the nodes do not need to share their raw data, they still
can learn useful information from other nodes in the network
through extracting information from shared trained models.
The main contributions of this paper can be summarized as
follows.

• We set up experiments in our laboratory to build a
private blockchain network with the aims of not only
obtaining real blockchain datasets, but also testing our
proposed learning model in a real-time manner. To the
best of our knowledge, this is the first dataset obtained
from a laboratory for studying cyberattacks in blockchain
networks, and thus we expect that our proposed BNaT
dataset can promote the development of ML-based in-
trusion detection solutions in blockchain networks in the
near future. More details of the dataset can be found at
the link 1.

• We build an effective tool named Blockchain Intrusion
Detection (BC-ID) to collect data in the blockchain
network. This tool can extract features from the collected
network traffic data, filter attack samples in network
traffic, and exactly label them in a real-time manner.

• We propose a collaborative decentralized learning model
to not only improve the accuracy of identifying attacks,
but also effectively deploy in decentralized blockchain
networks. This model enables fullnodes in the blockchain
network to effectively share their trained models to im-

1https://avitech-vnu.github.io/BNaT
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prove cyberattack detection efficiency without the need
of sharing their raw data.

• We perform both intensive simulations and real-time
experiments to evaluate our proposed framework. Both
simulation and experimental results clearly show the
outperformance of our proposed framework compared
with other baseline ML methods. Furthermore, our re-
sults reveal some important information in designing and
implementing learning models in blockchain networks in
practice, e.g., real-time monitoring and detecting attacks.

The rest of this paper is organized as follows. Section II pro-
vides fundamental backgrounds and our designed blockchain
network together with the collaborative learning model. Sec-
tion III presents our proposed collaborative learning model to
detect cyberattacks in the blockchain network. The experiment
setup, dataset collection, and evaluation method are described
in Section IV. After that, the experimental results and perfor-
mance evaluations are discussed more details in Section V.
Finally, we conclude the paper in Section VI.

II. BLOCKCHAIN NETWORK: FUNDAMENTALS AND
PROPOSED NETWORK MODEL

A. Blockchain

Blockchain is a digital ledger technology that provides a
transparent, tamper-proof, and secure environment for trans-
mitting data. This technology enables various parties to join,
verify and record transactions without a trusted third party
(e.g., a bank). In a blockchain network, multiple nodes are
used to simultaneously process and store data. In particular,
when a node in the blockchain network receives transactions
(e.g., money exchange in the Bitcoin network), it will gather
all the transactions and put them in a block. This node will
then start a mining process to find a “nonce” value for this
block. It is important to note that thanks to the feature of
the hash function, there is only a small set of satisfying nonce
values for a block, and these values can only be found through
an intensive searching process [1]. This mining process is a
special process of blockchain networks to provide proofs for
validated blocks, and thus this tamper-proof can significantly
enhance security for blockchain networks. After the node finds
the nonce value for the mining block, this new block will be
broadcast and verified by other nodes in the network. Finally,
if this block is verified, it will be put into the chain (linked to
the hash value of the previous block inside its header). After
the block is added to the chain, it is nearly impossible to
change information in this block, and thus this property can
guarantee the immutability of the blockchain. Another aspect
of blockchain is traceability due to the infeasible collision
of the hash function, and thus any transaction or block can
be tracked correctly. In summary, blockchain can be termed
as a decentralization, immutable, traceable, and time-stamped
digital data chain (ledger).

B. Designed Blockchain Network at our Laboratory

To launch a blockchain network, there are two main kinds
of blockchain nodes namely fullnode and bootnode. Firstly,
fullnodes take responsibility to store the ledger, participate
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Fig. 1: Our proposed learning model for blockchain network.

in the mining process, and verify all blocks and states. Fur-
thermore, they can be used to serve the network and provide
data on request, e.g., netstats, which is a visual interface
for tracking Ethereum network status (e.g., the block num-
ber, mining status, and the number of pending transactions).
Secondly, bootnode is a lightweight application used for the
Node Discovery Protocol. The bootnodes do not synchronize
blockchain ledger but help other Ethereum nodes discover
peers to set up Peer-to-Peer (P2P) connections in the network.

The system model together with essential components of
our designed blockchain network is set up as illustrated in
Fig. 1. Specifically, the system includes K fullnodes which
are used to receive transactions, mining blocks, and keep the
replica of ledger. These nodes continuously synchronize their
ledgers together by the P2P protocol with equal permissions
and responsibilities for processing data [1]. In order to connect
them together, a management node, known as bootnode, is
set up. The fullnodes connect and interrogate this bootnode
for the location of potential peers in the blockchain network.
After being connected, each fullnode can collect data (i.e.,
transactions) from its network. Transactions can come from
different blockchain applications such as cryptocurrency, smart
city, food supply chain, and IoT. First, when transactions are
sent to a fullnode, they will be verified and packed into one
block. After the node finds the nonce value for this block, it
will broadcast the block together with this nonce value to other
nodes in the network for verification. Finally, if the block is
verified by majority of nodes in the network, it will be added
to the chain.

At our laboratory, we design a private blockchain network
based on the Ethereum blockchain network. This network also
uses the Proof-of-Work (PoW) consensus mechanism, but the
block confirmation time is significantly faster than the older
version of Bitcoin. Furthermore, the smart contract layer of
Ethereum is suitable for flexible purposes of decentralized
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Fig. 2: The structure of classification-based for intrusion
detection learning model in a blockchain network.

environments as mentioned above. In addition, at each node,
several attacks, that can cause serious damage to the public
blockchain network, will be considered. We then capture the
traffic data to analyze their impacts on the blockchain network
using BC-ID. Note that, in practice, there is no software
that supports automatically capturing the blockchain network
traffic so far. Thus, we analyze the blockchain network traffic
data using a software named Wireshark [28] and build a new
collection tool, namely BC-ID (more details will be explained
in Section IV). In this way, we can observe the effects of these
attacks on different nodes in the blockchain network.

III. PROPOSED COLLABORATIVE LEARNING MODEL FOR
INTRUSION DETECTION IN BLOCKCHAIN NETWORK

Fig. 1 describes our proposed framework for intrusion detec-
tion in the blockchain network. In our proposed collaborative
learning model, the fullnodes in the blockchain networks will
be used as Learning Nodes (LNs) to learn knowledge from
their collected data inside their subnetworks and share their
learned knowledge to improve learning performance for the
whole network. We also propose to use a deep neural network
at each LN to learn useful information from its collected data.
Then, the LNs will share their trained learning models with
the CS. After that, the CS will calculate the aggregated model
(i.e., the global model) and share this model back with the
LNs. When a LN receives this aggregated model from the CS,
it will integrate with its current LN and train its local dataset.
This process will be repeated until convergence or reaching a
predefined maximum number of iterations. In the end, we can
obtain the global learning model for all the LNs.

In our proposed model, each blockchain node has a set of
local collected data, and we propose a deep neural network
(DNN) using Deep Belief Network (DBN) [29] to better learn
knowledge from this data. The DBN is a type of deep neural
network that is used as a generative model of both labeled
and unlabeled data. Therefore, unlike other supervised deep
neural networks which use labeled data to train the neural
networks (e.g., convolutional neural networks [30]), the DBN
has two stages in the training process. The first stage is the pre-
training process where the DBN trains its neural network with
unlabeled dataset. The second stage is the fine-tuning process
where DBN uses labeled dataset to train its neural network.
Thereby, the DBN can better represent the characteristics of
the dataset, and thus it can classify the normal behavior and
different types of attacks with high accuracies. In addition,

the DBN includes multiple Restricted Boltzmann Machines
(RBM) layers for latent representation [29]. In the DBN train-
ing process, the current layer generates latent representation by
using latent representation of the previous layer as the input.
Unlike other deep neural networks which also can process both
labeled and unlabeled data (e.g., autoencoder deep learning
network [30]), the DBN optimizes the energy function of each
layer to have better latent representations of data on each RBM
layer in each iteration. Thereby, the DBN is more appropriate
to analyze the blockchain network traffic where the samples
and features have relative coherence with each other.

The whole processes of DBN are illustrated in Fig. 2. Like
other DNNs, the structure of DBN has three layers including
an input layer, an output layer, and multiple hidden layers.
As can be seen in Fig. 2, the Gaussian Restricted Boltzmann
Machines (GRBM) layer, a type of RBM that can process real
values of data, is the input layer to receive and transform the
input data into binary values. We denote k ∈ {1, ...,K} as the
number of learning nodes in the collaborative learning model,
vk and hk to be the vectors of visible and hidden layers of
LN-k, respectively. In addition, M and N are the numbers of
visible and hidden neurons of GRBM. We denote hk

n and vkm
as the hidden layer-n and visible layer-m of LN-k. As defined
in [31], the energy function of GRBM of LN-k is calculated
as follows:

Ek
G(v

k,hk) =

M∑
m=1

(vkm − b1,m)2

2ϵ2m
−

M∑
m=1

N∑
n=1

wm,nh
k
n

vkm
ϵm

−
N∑

n=1

b2,nh
k
n,

(1)

where wm,n is the weight between visible and hidden neurons;
b1,m and b2,n indicate the bias of visible and hidden neurons,
respectively; and ϵm represents the standard deviation of the
neuron in the visible layer. From the result of equation (1),
we can find the probability that is used in the visible layer of
GRBM [31] as follows:

pkG(v
k) =

∑
hk e−EG(vk,hk)∑

vk

∑
hk e−EG(vk,hk)

. (2)

Then, we use the probability in equation (2) to calculate the
gradients of each GRBM layer with the expectation value

〈
.
〉

as follows [31]:

∇gkG,m,n =
∂ log pkG(v

k)

∂wm,n

=
〈 1

ϵm
vkmhk

n

〉
dataset

−
〈 1

ϵm
vkmhk

n

〉
model

.

(3)

Next, the gradient of GRBM layers can be calculated:

∇gGk =

M∑
m=1

N∑
n=1

∇gkG,m,n (4)

In the next stage, we need to calculate the energy function
and the gradient of RBM layers. We denote M ′ and N ′ are
the numbers of visible and hidden neurons of RBM layers. As
defined in [31] the energy functions of RBM layer of LN-k
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are defined as follows:

Ek
RBM (vk,hk) = −

M ′∑
m=1

b1,mvkm−

M ′∑
m=1

N ′∑
n=1

wm,nvmhk
n −

N ′∑
n=1

b2,nh
k
n,

(5)

The same as GRBM layers, we can calculate the gradient
of each RBM layer as follows:

∇gkR,m,n =
〈
vkmhk

n

〉
dataset

−
〈
vkmhk

n

〉
model

. (6)

And the gradient of RBM layers in LN-k:

∇gRk =

M ′∑
m=1

N ′∑
n=1

∇gkR,m,n (7)

After learning with multiple GRBM and RBM layers, we
define Xg,r

k as the output of the last hidden layer of LN-k.
In this paper, the output layer utilizes the softmax regression
function to classify the data samples based on probability.
We denote W o and bo as the weight matrix and bias vector
between the output and the last hidden layer, respectively. We
then can define the probability of the output Z belonging to
Class-t as follows:

pok(Z = t|Xg,r
k ,W o, bo) = softmax(W o, bo) (8)

where t ∈ {1, .., T} is a class of the output, and T refers to the
total classes (including different types of attacks and normal
behavior). The prediction Zk of the probability pok in LN-k
can be calculated:

Zk = argmax
t

[pok(Z = t|Xg,r
k ,W o, bo)], (9)

where Z is the output prediction. Then, we can calculate the
gradient between the output layer and the last hidden layer
from equation (8) as follows:

∇gok =
∂pok(Z = t|Xg,r

k ,W o, bo)

∂W o . (10)

After that, the results of equation (4), equation (7), and
equation (10) are used to calculate the total gradient ∇gtk of
DBN with multiple GRBM, RBM layers and the output layer
of LN-k as follows:

∇gtk = ∇gGk +∇gRk +∇gok. (11)

In the training process, the DBN first trains its neural
network with unlabeled data for pre-training. Then, DBN uses
its labeled data to fine-tune its neural network. At this stage,
the DBN of LN-k calculates its gradient ∇gtk. After that, this
gradient is sent to the CS to create an updated global model for
all LNs as illustrated in Fig. 3. For example, at iteration i the
CS receives gradients from all K LNs, the CS first performs
the average gradient function [32] as follows:

∇g∗ =
1

K

K∑
k=1

∇gtk. (12)

We then denote φi as the global model at iteration i which
includes the weight matrix for all layers of the LN’s deep

DL model 1

Centralized Server (CS)

Data-1 Data-2 Data-K

DL model KDL model 2

Send local gradient
Send global model

Fig. 3: The illustration of the collaborative learning between
DL models and the CS.

learning model, and µ represents the learning rate. From the
result of equation (12), the CS can update the global model
at iteration i+ 1 as follows:

φi+1 = φi + µ∇g∗. (13)

Next, the CS sends the latest global model φi+1 to the LNs
to update their deep learning models. This process is repeated
until it reaches convergence or gets the maximum number of
iterations. At this time, we can find the optimal global model
φopt that includes the optimal weights of all layers. We denote
W o

opt as the optimal weight matrix between the output layer
and the last hidden layer from φopt, the output prediction Zk

of LN-k thus can be calculated as follows:

Zk = argmax
t

[pok(Z = t|Xg,r
k ,W o

opt, b
o)]. (14)

Using equation (14), the softmax regression of each LN
can classify its blockchain network samples to be a normal
behavior or a type of attack. Algorithm 1 summarizes the
process of our proposed collaborative learning model. In
our proposed model, the learning model of each network
can be trained by the dataset from its local network and
exchange learning knowledge with those from other nodes
in a blockchain network in an offline manner. In a practical
blockchain network with a large number of learning nodes, we
can schedule for nodes to exchange the learning knowledge
in the offline training phase at appropriate times to avoid
network congestion. In this way, each node can effectively
learn knowledge from other nodes while avoiding the traffic
congestion of the network. After the training process, the
trained models can be used to help nodes to detect attacks
in a real-time manner.

IV. EXPERIMENT SETUP, DATASET COLLECTION AND
EVALUATION METHOD

This section will explain more details about experiment
setup, data collection, and feature extraction over our designed
blockchain system.

A. Experiment Setup

In our experiments, we set up an Ethereum blockchain
network in our laboratory which includes three Ethereum
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Algorithm 1 The classification-based collaborative learning
algorithm

1: while i ≤ maximum number of iterations or the training
process is not converged do

2: for ∀k ∈ K do
3: DBN of LN-k learns Xk and produces Zk.
4: Calculate gradient ∇gtk.
5: Send ∇gtk to CS.
6: end for
7: CS calculates average gradient ∇g∗ and global model

φi.
8: i = i+ 1.
9: CS updates global model φi+1.

10: CS sends global model φi+1 to all LNs.
11: LNs update their DBNs.
12: end while
13: DBN of LNs predict and classify Zk from the training

dataset Xk with the optimal global model φopt .

Fig. 4: Experiment setup.

fullnodes, an Ethereum bootnode, and a netstats server. All
these nodes are connected to a Cisco Switch Catalyst 2950 as
illustrated in Fig. 4. The details of these nodes are as follows:

• Ethereum fullnodes are launched by Geth v1.10.14 [33] -
open-source software for implementation of the Ethereum
protocol. These nodes share the same initial configu-
ration of genesis block, i.e., PoW consensus mecha-
nism, 8,000,000 gas for block gas limit, initial difficulty
100,000. Each node is running on a personal computer
with processor Intel® Core™ i7-4800MQ @2.7 GHz,
RAM of 16 GB.

• Bootnode is also created by Geth v1.10.14 and connected
to the three Ethereum nodes.

• Ethereum netstats is launched by an open-source software
named “eth-netstats” on Github [34].

The normal traffic data is configured with the three trust-
ful servers, while an attack device will execute abnor-
mal/malicious activities to the blockchain network traffic. Each
trustful server takes responsibility for generating data and
sending transactions to the corresponding Ethereum node in
its subnetwork as visualized in Fig. 4. In summary, in the

normal state, the following tasks are scheduled or randomly
occur in the network:

• The servers are scheduled to send transactions.
• The users call functions in the deployed smart contracts to

explore the ledger. Besides transaction-related functions,
the users also send requests to the Ethereum nodes for
tracking their balances or the status of miners. Both
of these works are randomly made by HTTP requests
to the Ethereum node API (Application Programming
Interface).

• Ethereum nodes broadcast transactions and mined blocks
to synchronize their ledgers. The packets of bootnode are
also included in this field.

• WebSockets and JSON-RPC are used when netstats get
information from Geth clients.

• HTTP requests and replies to view netstats interface and
results of cyberattack detection.

B. Dataset Collection and Feature Extraction

In this section, we consider network layer aspects of the
permissionless blockchain [35], [36] to detect cyberattacks in
a blockchain network. In general, the goals of an adversary are
usually the monetary benefit, e.g., chain splitting, and wallet
theft, or stability of the network, e.g., delay and information
loss. In this work, we focus on the attacks at the network
layer. Attacks at the application layer, e.g., 51%, transaction
malleability attacks, timejacking, and smart contract attacks,
are out of the scope of this work and can be considered
in future work. Specifically, we perform four typical types
of network attacks that have been reported in blockchain
networks, i.e., the BP for wallet theft; DoS and MitM for
information loss; and FoT for consensus delay. These are
the ubiquitous attacks in the network traffic layer that have
caused a number of serious consequences for many years.
More details are as follows:

• Brute Password (BP) attack: is derived from traditional
cyberattack when hackers perform such attacks to steal
blockchain users’ accounts. In this way, the hackers can
access the users’ wallets and steal their digital assets. As
mentioned in Section I, the BP attack on KuCoin caused
the loss of up to $281 million [6]. To perform this attack,
the attacker retries passwords of an Ethereum public key
until it finds out the correct login information.

• Denial of Service (DoS) attack: is also another common
type of attack in blockchain networks as it can be easily
performed to attack blockchain nodes. For such kind of
attack, the attackers will launch a huge amount of traffic
to a target blockchain node in a short period of time.
Consequently, the target node will not be able to work
as normal, i.e., mining transactions, and even be sus-
pended. In the real-world, Bitfinex [37] was temporarily
suspended due to such kind of attack. Thus, in our setup, a
simple DoS attack is simulated, i.e., an SYN flood attack,
by repeatedly sending initial connection request (SYN)
packets to an Ethereum node.

• Flooding of Transactions (FoT) attack: targets delay the
PoW blockchain network by spamming the blockchain
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network with null or meaningless transactions. When
the number of transactions per second in the Ethereum
network suddenly hits the top, a mining node may face
two following issues, i.e., too much traffic (similar as
that of DoS), and the queue of pending transactions is
full. It equates to the unnecessary time burden for mining
process and block propagation [12]. In 2017, the Bitcoin
mempool size was exceeded 115,000 unconfirmed trans-
actions which led to $700 million worth of transaction
stall [36]. In our work, FoT attack is implemented by
continuously sending a large number of transactions to
an existing smart contract.

• Man in the Middle (MitM) attack: is another typical attack
where an attacker places himself between the legitimate
communicating parties and secretly relays and possibly
modifies the information exchanged between them. In
this way, the attacker can intercept, read, and modify the
blockchain messages. For example, hackers can read the

TABLE I: Features of the designed dataset.

# Features name T Description
Basic features

1 duration C
length of the connection
(seconds)

2 protocol type D
type of the protocol
(i.e., tcp, udp, icmp)

3 service D
network service
(e.g., http, ssh, etc)

4 src bytes C
number of data bytes
from source to destination

5 dst bytes C
number of data bytes
from destination to source

6 flag D
normal or error status
of the connection

Statistical features
Features refer to source IP-based Statistical

7 count C
number of connections to
the same source IP
as the current connection

8 srv count C
number of connections to
the same service
as the current connection

Features refer to these same source IP connections
9 serror rate C % of ‘SYN’ errors connections
10 same srv rate C % of same service connections

11 diff srv rate C
% of different services
connections

Features refer to these same service connections
12 srv serror rate C % of ‘SYN’ errors connections
13 srv diff host rate C % of different host connections
Features refer to destination IP-based Statistical

14 dst host count C
number of connections to
the same destination IP
as the current connection

15 dst host srv count C
number of connections to
the same service as
the current connection

Features refer to these same destination IP connections
16 dst host same srv rate C % of same service connections

17 dst host diff srv rate C
% of different services
connections

18 dst host same src port rate C
% of same both source port
and destination IP connections

19 dst host serror rate C % of ‘SYN’ errors connections
Features refer to these same service connections
20 dst host srv diff host rate C % of different host connections
21 dst host srv serror rate C % of ‘SYN’ errors connections

API messages between users and blockchain nodes to
steal their wallet password [11]. To implement MitM,
an attack device first filters ‘eth sendrawtransaction’
packets, which represent any transaction from users to
blockchain nodes. Then, these packets’ contents are ran-
domly modified, leading to invalid transactions.

In order to capture traffic data of these attacks, we
build a dataset collection tool, named BC-ID, which
inherits the core of an open-source utility named
“kdd99 feature extractor” [38] and our new designs to
fit the considered Ethereum network, i.e., correct the service
of packets related to Ethereum nodes, remove meaningless
features, and automate label dataset samples based on some
given properties. To do this, we first use the ‘libpcap-dev’
library of Linux to capture all the network data (including
normal and different types of attacks) from the local network.
Then, the BC-ID is used to extract features from the collected
data, filter the attack samples, and label them as normal or
a type of attack. In particular, the BC-ID starts by capturing
raw traffic data based on ‘libpcap-dev’ package of Linux
OS. Since each blockchain network has a few specific ports
for peer connections, client connections, and so on, BC-ID
targets to filter and analyze traffic data in these ports. For
example, the Ethereum blockchain network uses port 30303
for the TCP port listener, and port 8545 for JSON-RPC by
default. As KDD99 dataset [39], BC-ID extracts features and
then separates them into two categories, e.g, basic features
(i.e., all the attributes can be extracted from a TCP/IP
connection) and traffic features (i.e., statistics of packets with
the same destination host or service in a window interval).
Especially, our goal is to achieve a trained model that can be
applied to our proposed real-time blockchain attack detection
system, when the number of samples in a prediction frame is
limited. Thus, the BC-ID collects the dataset frames in which
each frame lasts for 2 seconds and extracts their features.
The BC-ID then puts all collected data in this frame into
a single file. Finally, we merge all single files together to
make the full dataset. In summary, Table I shows 21 features
in the designed dataset, which are separated into two types,
i.e., discrete (D) and continuous (C). For continuous features,
they are calculated in 2 seconds time window (similar to that
of the famous KDD99 dataset [39]).

In each Ethereum node, the separated dataset is collected
in five states (classes), i.e., normal state (Class-0), BP at-
tack (Class-1), DoS attack (Class-2), FoT attack (Class-3),
and MitM attack (Class-4). The normal state is captured in two
hours, the rest of them in an hour through the designed BC-ID
tool. As described above, when a node is attacked, the normal
traffic still exists. Therefore, the attack samples can be filtered
out by features-based two properties, i.e., the source and
destination IP address of the attack device; service, src length,
and dst length of the samples, which are analyzed by Wire-
shark [28]. To improve the diversity of the designed dataset,
the normal traffic data in the attack state is mixed with traffic
data in the normal state. In our experiments, a number of
random samples in each state are selected to reduce the size
of the bulk dataset as shown in Table II. In fact, we mix
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(a) Learning Node 1 (b) Learning Node 2 (c) Learning Node 3
(d) Combine data from
all learning nodes

Normal MitMBP DoS FoT

Fig. 5: Visualization using t-SNE for collected datasets.

TABLE II: The number of samples in the designed dataset.

Class

Ethereum
node

Node-1
(samples)

Node-2
(samples)

Node-3
(samples)

Normal 50,000 50,000 50,000
BP 5,000 5,000 5,000
DoS 5,000 5,000 5,000
FoT 5,000 5,000 5,000
MitM 5,000 5,000 5,000

normal traffic data in an equal ratio, i.e., 10,000 samples per
normal state, normal traffic data at BP, DoS, FoT, and MitM,
respectively.

Fig. 5 illustrates the visualization of our designed dataset us-
ing t-Distributed Stochastic Neighbor Embedding (t-SNE) [40]
with three most important components. Although sharing the
same configurations for t-SNE, the dataset of each LN has
a different distribution in the output. In 3D view, the DoS
and FoT attack samples show a fairly clear separation from
normal state points. Otherwise, the BP and MitM attack
samples collide with the normal state samples. This indicates
that discriminating BP and MitM samples from the normal
data points would be significantly challenging.

C. Evaluation Method

The confusion matrix with accuracy, precision, and recall
proposed in [41] is widely used to evaluate the performance
of machine learning algorithms. Let TP, FP, TN, and FN denote
“True Positive”, “False Positive”, “True Negative”, and “False
Negative”, respectively. The accuracy of the total system with
T classes including normal behaviors and different types of
attacks is as follows:

Accuracy =
1

T

T∑
t=1

TPt + TNt

TPt + TNt + FPt + FNt
. (15)

The precision of class t is calculated as P t
re =

TPt

TPt+FPt
. In

this paper, we use weighted average precision to evaluate the
performance of the whole system. We denote St as the number
of samples of class t and S as the number of samples of the
whole dataset. The weighted average precision is calculated

as follows:

Precision =

T∑
t=1

P t
re × St

S
. (16)

The recall of class t is calculated by Rt
e = TPt

TPt+FNt
.

The weighted average recall that we use to calculate the
performance of the total system is calculated as follows:

Recall =

T∑
t=1

Rt
e × St

S
. (17)

In the next section, we also use accuracy, precision, recall
to evaluate and compare the performance of our proposed
Collaborative Learning model (proposed CoL) with two other
baseline methods, i.e., Centralized Learning model (CeL) and
Independent Learning model (IL).

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

In this section, we use the collected datasets of three nodes
described in the aforementioned section for the corresponding
LNs. The dataset of each LN is randomly split into training
and testing dataset. All LNs use DBN with the same structure
of neural network for learning and detecting attacks. However,
the LNs have to work in different learning models and various
scenarios. Each LN has itself training and testing dataset, and
thus we can use these datasets to evaluate and compare the
performance of the proposed CoL, the CeL and the IL in
different scenarios.

A. Simulation Results

In this section, we present the simulation results with the
dataset of LNs in different learning models. The details of
datasets using for simulation are as follows:

• Proposed Collaborative Learning Model (proposed
CoL): Each LN learns its training dataset and performs
collaborative learning with other LNs to generate the
global model. Then, we use the global model to test the
merged testing dataset of all participated LNs.

• Centralized Learning Model (CeL): The centralized
node (e.g., one of the mining node in the network) is
assumed to be able to collect data from all the nodes
in the network and train the deep learning model on
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TABLE III: Simulation results.

Model 2 Learning Nodes (LNs) 3 Learning Nodes (LNs)

Proposed CoL CeL IL Proposed CoL CeL IL
LN-1 LN-2 LN-1 LN-2 LN-3

Accuracy 97.427 97.330 97.036 96.865 97.276 97.270 96.827 96.731 96.825
Precision 93.861 93.620 92.793 92.000 93.448 93.249 92.209 91.343 92.798
Recall 93.567 93.324 92.590 92.162 93.189 93.176 92.067 91.829 92.063
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Fig. 6: Training process of considered learning models.

the collected datasets. Then, we use the trained model
to test data based on the merged testing dataset of all
participated LNs.

• Independent Learning Model (IL): Each LN learns its
training dataset without sharing knowledge with other
LNs. Then, we use this model to test data based on the
merged testing dataset of all participated LNs.

1) Convergence Analysis: Fig. 6 describes the convergence
of the proposed CoL, the CeL and the IL (in terms of accuracy)
of three LNs in the training process. The proposed CoL is
obtained at the LN-1 after obtaining the global model. The
CeL has a large number of training samples from three LNs
so it can reach the convergence with around 97% accuracy
after 400 epochs. Besides, the proposed CoL and IL converge
after 800 epochs and 1300 epochs, respectively. After 3,000
learning epochs, we can observe that the proposed CoL has a
higher accuracy compared with that of the IL (i.e., 97.2% vs
96.8%). The reason is that the proposed CoL can obtain the
exchange knowledge from DL models of other LNs. Thereby,
it can achieve similar performance as that of the CeL.

2) Performance Analysis: Table III presents the simulation
results in two cases, i.e., two participated LNs, and three
participated LNs. In both cases, we can observe the same trend
when the accuracy, precision and recall of the proposed CoL
are higher than those of the IL and nearly equal to those of the
CeL. In particular, the accuracy of the proposed CoL is higher
than that obtained by LN-1 in IL (approximately 0.5%), and
the precision of the proposed CoL is about 2% higher than
that obtained by LN-2 in IL in the case of three participated
LNs. These results demonstrate that the proposed CoL can
exchange knowledge with other LNs to improve its ability of
detection, so it can achieve better performance in classifying

Fe_Ex Pred Fe_Ex Pred

Frame 

capture

Pre-processing

& Prediction

time (s)0 2 4

Data Frame Data Frame Data Frame

Packets

Fig. 7: Timeline of verification phase.

attacks in the blockchain network than those of the IL. It
also demonstrates that the learning model of IL should not
be used to classify the data of other LNs. In addition, without
sharing LN’s dataset with a central node for training (e.g., a
cloud server), the proposed CoL can achieve nearly the same
accuracy as those of the CeL in all the scenarios.

B. Experimental Results

In this section, we present the experimental results obtained
through real-time experiments at our laboratory. In this ex-
periment, each blockchain node is installed a learning model
to become an LN. Each LN learns its local dataset and then
performs real-time attack detection in the blockchain network.
We consider the scenario of two LNs and three LNs with
the proposed CoL and the CeL. In the training process, the
proposed CoL and the CeL are fed with the similar datasets
as explained in the previous section. We then implement the
trained model to all the participated LNs to perform real-time
attack detection for both learning models in the testing process.

1) Real-time capturing and processing: In a real-time sys-
tem, the cyberattack detection system continuously receives a
number of the Ethereum network traffic data. Therefore, the
system has to perform capturing, collecting frames, extracting
features, analyzing and predicting within a period of time,
i.e, 2 seconds. Fig. 7 shows the timeline of the cyberattack
detection program. The data frame is exploited by our feature
extractor function (Fe Ex) of BC-ID tool, and this is input for
the trained model to predict (Pred) and classify packets to be
normal or attack. All processes have to complete in 2 seconds
before the next data frame of IP packets coming. To verify
the predicted results from the trained model, all frames and
prediction results are stored. These frames are merged into a
full validation dataset and labeled by own designed BC-ID.
After that, these ground truth labels are compared with the
prediction results to obtain a validation report.

2) Performance Analysis: Table IV presents the experimen-
tal results of the proposed CoL and the CeL with different
participated LNs. We obtain the same trends as those of the
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TABLE IV: Real-time experimental results of 3 LNs models.

Model 2 Learning Nodes (LNs) 3 Learning Nodes (LNs)
Proposed CoL CeL Proposed CoL CeL
LN-1 LN-2 LN-1 LN-2 LN-1 LN-2 LN-3 LN-1 LN-2 LN-3

Accuracy 98.611 98.242 98.464 98.097 98.440 98.131 97.686 98.503 98.192 97.771
Precision 97.433 96.871 97.146 96.634 97.146 96.717 95.902 97.138 96.679 95.864
Recall 96.529 95.606 96.159 95.243 96.101 95.328 94.214 96.258 95.481 94.427

simulation results. The accuracy results obtained by two and
three learning models of both proposed CoL and CeL are
slightly higher than those of the simulations at about 1%.
This is because each type of attack has different distributions
of attack samples in a period of time. Table V presents the
number of samples of each class collected in 15 minutes.
In this table, we can observe that Class-1 and Class-4 have
small numbers of samples during this period, this can lead
to low accuracy in statistics for these classes and reduce the
total accuracy of the model. However, our proposed CoL still
has better performance than those of the CeL in LN-1 in the
case of two LNs (i.e., up to 0.2% accuracy, 0.3% precision
and 0.4% recall). Overall, our proposed CoL always achieves
the best performance with approximately 98.6% accuracy,
95.43% precision and 96.52% recall with two LNs and 98.44%
accuracy, 97.14% precision and 96.1% recall with three LNs.
These results demonstrate that our proposed CoL can detect
attacks with nearly the same accuracies for all participated
LNs as those of CeL.

3) Real-time Monitoring and Detection: Fig. 8 illustrates
the real-time monitoring of our proposed CoL for normal state
and three types of attacks in the network. Fig. 8(a) is the
normal state (Class-0) of the network with a high number of
normal samples and a low number of attack samples. Then, the
BP and MitM attacks are performed. Fig. 8(b) and Fig. 8(e)
show a slight increase in the number of BP attacks and MitM
attacks. This is because the number of BP attack samples
is much smaller than other states in a period of time as in
Table V. In this case, the detection mechanism is activated and
alarms the network under the BP attack (Class-1). Similarly,
the DDoS attack in the network is described in Fig. 8(c) with
a high increase in the number of samples of DoS attacks.
Finally, Fig. 8(d) describes the FoT attacks. Unlike other
attacks, the FoT attacks include a large number of samples,
thus it increases both the number of normal and attack samples
(above 200 traffic samples per 2 seconds) more than other
attacks (about 100 traffic samples per 2 seconds). Thereby,
in all the cases, we can observe that our proposed intrusion
detection system can detect attacks effectively in a real-time
manner.

4) Real-time Processing Capacity: In this experiment, we
fix the number of input samples in our proposed model to find
the maximum real-time processing capacity in capturing and
detecting attacks. Fig. 9 illustrates the real-time processing
capacity of our proposed model. The processing time τ is
counted from the time when our proposed model reads the
file containing the samples, until completing classification and
producing the output. This work is repeated 20,000 times to

TABLE V: The number of samples on LN-1 in five hours.

Class-0 Class-1 Class-2 Class-3 Class-4
Number of samples 736,897 2,424 481,532 886,389 3,483
Portion (%) 34.912 0.115 22.814 41.994 0.165

determine the stability of the detection time of our proposed
model. We vary the number of input samples multiple times to
find the appropriate number that is adapted to the condition in
Fig. 7. In most of the cases (98%), our proposed framework
can classify 85,000 samples in less than 2 seconds. These
results demonstrate that our proposed detection framework is
efficient to deploy to detect attacks in real-world blockchain
networks. It can not only detect attacks with high accuracy
(up to 98.6%) but also quickly (up to 85,000 samples within
2 seconds).

VI. CONCLUSION

In this work, we have proposed a novel collaborative
learning framework for a cyberattack detection system in a
blockchain network. First, we have implemented a private
blockchain network in our laboratory. This blockchain network
is used to (1) generate data (both normal and attack data)
to serve the proposed learning models and (2) validate the
performance of our proposed learning framework in real-time
experiments. After that, we have proposed a highly-effective
learning model that allows to be effectively deployed in the
blockchain network. This learning model allows nodes in the
blockchain can be actively involved in the detection process
by collecting data, learning knowledge from their data, and
then exchanging knowledge together to improve the attack
detection ability. In this way, we can not only avoid problems
of conventional centralized learning (e.g., congestion and
single point of failure) but also protect the blockchain network
right at the edge. Both simulation and real-time experimental
results then have clearly shown the efficiency of our proposed
framework. In future, we plan to continue developing this
dataset with other emerging types of attacks and develop more
effective methods to protect blockchain networks.
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