
1

Securing Blockchain Systems: A Novel
Collaborative Learning Framework to Detect
Attacks in Transactions and Smart Contracts

Tran Viet Khoa, Do Hai Son, Chi-Hieu Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Nguyen Linh Trung,
Tran Thi Thuy Quynh, Trong-Minh Hoang, Nguyen Viet Ha, and Eryk Dutkiewicz.

Abstract—With the escalating prevalence of malicious activities
exploiting vulnerabilities in blockchain systems, there is an urgent
requirement for robust attack detection mechanisms. To address
this challenge, this paper presents a novel collaborative learning
framework designed to detect attacks in blockchain transactions
and smart contracts by analyzing transaction features. Our
framework exhibits the capability to classify various types of
blockchain attacks, including intricate attacks at the machine
code level (e.g., injecting malicious codes to withdraw coins
from users unlawfully), which typically necessitate significant
time and security expertise to detect. To achieve that, the
proposed framework incorporates a unique tool that transforms
transaction features into visual representations, facilitating ef-
ficient analysis and classification of low-level machine codes.
Furthermore, we propose a customized collaborative learning
model to enable real-time detection of diverse attack types at
distributed mining nodes. In order to create a comprehensive
dataset, we deploy a pilot system based on a private Ethereum
network and conduct multiple attack scenarios. To the best of our
knowledge, our dataset is the most comprehensive and diverse
collection of transactions and smart contracts synthesized in
a laboratory for cyberattack detection in blockchain systems.
Our framework achieves a detection accuracy of approximately
94% through extensive simulations and real-time experiments
with a throughput of over 1,100 transactions per second. These
compelling results validate the efficacy of our framework and
showcase its adaptability in addressing real-world cyberattack
scenarios.

Index Terms—Cybersecurity, cyberattack detection, deep
learning, blockchain, smart contract.

I. INTRODUCTION

BLOCKCHAIN technology has been rapidly being de-
veloped with many applications in recent years. This

technology was initially developed with a well-known digital
currency application named Bitcoin. After that, many poten-
tial applications using this technology have been developed

This work is the output of the ASEAN IVO http://www.nict.go.jp/en/
asean ivo/index.html project “Agricultural IoT based on Edge Computing”
and financially supported by NICT http://www.nict.go.jp/en/index.html

T. V. Khoa, C. H. Nguyen, D. T. Hoang, D. N. Nguyen, and
E. Dutkiewicz are with the School of Electrical and Data Engineering,
University of Technology Sydney, Sydney, NSW 2007, Australia (e-mail:
{khoa.v.tran, hieu.c.nguyen}@student.uts.edu.au, {hoang.dinh, diep.nguyen,
eryk.dutkiewicz}@uts.edu.au).

N. L. Trung, D. H. Son, and T. T. T. Quynh, and N. V. Ha are with the
Advanced Institute of Engineering and Technology (AVITECH), University
of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
(e-mail: {linhtrung, dohaison1998, quynhttt, hanv}@vnu.edu.vn).

Trong-Minh Hoang is with the Posts and Telecommunications Institute of
Technology, Vietnam (e-mail: hoangtrongminh@ptit.edu.vn).

beyond cryptocurrency. The tremendous development of this
technology is from the fact that it provides a new approach to
data sharing and storage without the need for any third party
(e.g., bank and government). Blockchain is a decentralized
environment in which transactions and smart contracts can be
recorded and executed in a secure and transparent manner. It is
challenging to manipulate transactions once they are put into
the blocks. Thus, blockchain technology protects data integrity,
and its applications have been being widely developed in
various fields of industry such as smart manufacturing, supply
chain management, food industry, smart grid, healthcare, and
Internet of Things [1].

Smart contracts (SC) are solely programs in blockchain
systems (e.g., Ethereum and Solana). Smart contracts define
and enforce a set of rules for users via using codes. They also
facilitate user interactions by allowing them to send transac-
tions to execute a defined function. By default, smart contracts
and the interactions with them are irreversible [2]. However,
in practical scenarios, attackers can inject malicious codes
into smart contracts and transactions to attack a blockchain
system for specific purposes. For instance, smart contracts
(SCs) exhibit various vulnerabilities [3], which attackers can
exploit to engage in injurious purposes, including unauthorized
coin withdrawals from other users’ pockets and taking control
of the system [4]. Specifically, in 2016, an SC named De-
centralized Autonomous Organization (DAO) was a victim of
a re-entrancy attack. At that time, this SC held $150 million
in the Ethereum network, and this attack led to a hardfork
of Ethereum that created Ethereum Classic (ETC) [3]. In
addition, the 4Chan group created an SC named Proof of Weak
Hands Coin (PoWHC) on the Ethereum system. However,
this SC witnessed an underflow attack that caused a loss
of 866 ETH (i.e., Ethereum coins) [5]. Although most of
the attacks on blockchain systems happened in the finance
sector, many blockchain-based applications are developing in
different sectors such as healthcare, supply chain, and food
industry [1].

There are a number of challenges to detect and prevent
attacks in transactions and SCs. The first challenge is lacking
a dataset synthesized in the laboratory for various kinds of
attacks on transactions and SCs in a blockchain system. In
recent research (e.g., [6] and [7]), the authors use datasets from
the public blockchain network and label data using the attack
records history. When using this method to label attack data,
it is assumed that the benign data does not include the insight

ar
X

iv
:2

30
8.

15
80

4v
1

 [
cs

.C
R

]
 3

0
A

ug
 2

02
3

http://www.nict.go.jp/en/asean_ivo/index.html
http://www.nict.go.jp/en/asean_ivo/index.html
http://www.nict.go.jp/en/index.html

2

attacks. Therefore, generating data, which has “clean” samples
of normal behavior and attacks in transactions and SCs, is
urgently needed. However, a blockchain system in the Mainnet
has large and diverse types of data. Thus, a synthesized dataset
from the laboratory needs to be diverse and similar to reality.
The second challenge is to understand and analyze the content
of Bytecode, the compiled form of an SC’s source code. It
is worth noting that the main functions of the transactions
and smart contracts are encoded into the Bytecode, which
is represented by a series of hexadecimal numbers, to be
implemented in a blockchain system [4]. It is crucial for a
real-time attack detection system in analyzing the content of
Bytecode to detect attacks in a blockchain system [6]. There
are two approaches to analyzing the Bytecode, i.e., using
the source code of SCs for comparison and analyzing the
Bytecode. Unfortunately, only 1% source codes of SCs are
open [6], and analyzing Bytecode without the corresponding
source code of smart contracts and transactions can be unreli-
able and time-consuming [6]. The third challenge is that most
of the current attack detection models are centralized. Thus,
they need to gather all data (i.e., transactions together with
their labels, e.g., attack or normal) into a centralized model
to perform training and testing. However, blockchain systems
are decentralized environments so it is challenging to collect
data from all mining nodes (MNs) to perform training at the
centralized server. In addition, if we transfer data from all
MNs to the centralized server for processing (e.g., training
and testing), data privacy can be compromised.

Given the above, in this paper, we first set up experiments
in our laboratory to deploy various kinds of attacks on
transactions and SCs in a blockchain system (i.e., a private
Ethereum system). To address the first challenge, we collect
all the transactions in MNs to build a dataset, called At-
tacks on Blockchain Transactions Dataset (ABTD). This
is the first cyberattack dataset on transactions and SCs in
a blockchain network synthesized in a laboratory. To enrich
the dataset, we create a large number of individual accounts
to send transactions to the blockchain network for execution
randomly. This dataset can be used for both research and
industry purposesto address cyberattacks in transactions and
smart contracts. In addition, to deal with the second challenge
of Bytecode analysis, we propose a novel ML-based frame-
work that analyzes transactions and SCs without the need of
understanding the SC source codes. Our proposed framework
automatically extracts transaction features in real-time and
efficiently analyzes them to detect insight attacks. To do this,
we first build a highly-effective tool, called Blockchain Code
Extraction and Conversion Tool (BCEC), to convert impor-
tant information of transactions and SCs to grey images. This
tool calls the transaction using a transaction hash (i.e., a feature
of the transaction) and then extracts key fields like Bytecode
and value from the transactions. After that, it can convert
the contents into images for further processing. Second, we
develop an ML-based approach based on CNN to learn and
detect attacks insight transactions and SCs. To the best of
our knowledge, this is the first ML-based framework that
analyzes the Bytecode directly and detects various types of
attacks in transactions and SCs. Such an ML-based frame-

work, which uses important information from transactions for
analysis, is more flexible and easier to detect new types of
attacks than other vector-based methods. To address the third
challenge about centralized attack detection, we develop a
novel collaborative cyberattack detection framework that can
detect cyberattacks inside transactions and SCs in real-time
with high accuracy. In our proposed framework, the CNN of
each mining node can exchange learning knowledge (i.e., the
trained models) with other nodes to create a global model.
In this way, the learning model of each node can improve
the detection accuracy without sending their local data over
the network. Our major contributions can be summarized as
follows:

• We implement a blockchain system and perform exper-
iments to collect the ABTD dataset. To the best of our
knowledge, this is the first dataset with cyberattacks on
transactions and SCs of a blockchain system that was
synthesized in a laboratory.

• We develop BCEC that can collect transactions, extract
their features, and convert them into images to build a
dataset. This tool can implement in real-time to support
the analysis of the attack detection framework.

• We develop a real-time attack detection framework that
can deploy at the mining nodes to detect attacks in
transactions and SCs for a blockchain network. In our
framework, the mining nodes can detect attacks in trans-
actions and SCs in real-time at about 2150 transactions
per second.

• We propose a collaborative learning framework that can
efficiently detect attacks in a blockchain network. In
our framework, each mining node can exchange learning
knowledge with others and then aggregate a new global
model without any centralized model. In this way, our
framework can achieve high accuracy at about 94%
without exposing the mining node’s local dataset over
the network.

• We perform both simulations and real-time testing to
evaluate our proposed framework. Our proposed frame-
work can achieve accuracy up to 94% in simulation and
91% in real-time experimental results. In addition, our
framework has the capacity to analyze various types of
transaction features, expanding the detection capabilities
for the diversity of attacks.

II. RELATED WORK

There are several works trying to deal with attacks on trans-
actions and SCs in blockchain networks. In [8], the authors
propose to convert the source codes of smart contracts into
vectors. They then use bidirectional long-short-term memory
to identify abnormal patterns of vectors to detect re-entrancy
attacks. The simulation results show that their proposed model
can achieve 88.26% F1-Score and 88.47% accuracy in de-
tecting re-entrancy attacks. In [9], the authors propose to
use feature extraction to analyze the Bytecode of SCs. This
approach is motivated by the fact that the characteristics of
attacks are often expressed as sets of hexadecimal numbers
embedded inside bytecodes. In this paper, the authors use

3

Blockchain System

Incoming
transactions

Incoming
transactions

Local model

Mining node
Mining node 1

Mining node 2

Local model 2

Incoming
transactions

Normal Transaction

Attack

Local model 1

Fig. 1: The system model of our proposed framework. While receiving transactions, our framework will perform preprocessing
to extract important information. After that, our collaborative learning will perform the attack detection process to detect
network normal behaviour or a type of attack.

various types of machine learning models to detect 6 types
of attacks with an F1-score of up to 97%. Even though the
methods in [8], [9] can detect some types of attacks, they
need to use source code of SCs in high-level programming
languages (e.g., Solidity). It is worth noting that when an
SC is created, the SC creates corresponding transactions for
execution and then sends them to MNs for the mining process.
From the MN point of view, we only can observe transactions
with the encoded content (e.g., Bytecode) in their features. In
real-time attack detection, we need to analyze this content to
find out the insight attacks in transactions and SCs.

Unlike the above deep learning approaches, in [10], the
authors also study the Bytecode. They propose to use the attack
vector method to directly analyze the Bytecode. This approach
can be effectively detected some specific attacks by a few
pre-defined sets of Opcodes. Hence, this method is difficult
to extend to various types of new attacks. In addition, even
though the attack detection ability can achieve up to 100% in
some types of attacks (e.g., re-entrancy, delegatecall, overflow,
etc), the authors only test this method in a smart scale of data
(about 100 samples). In [11], the authors introduce a smart
contract security testing approach with the aim of identifying
the suspicious behaviors associated with vulnerabilities of
smart contracts in blockchain networks. In [6] the authors
propose to use Graph embedding to analyze Bytecode. To
do this, the authors convert the Bytecode of SC into vectors
and then compare the similarities between the vectors of SC
to detect the insight attacks of SC. The experimental results
show that this method can achieve a precision of up to 91.95%
in detecting attacks. In addition, in [7], the authors propose
DefectChecker which is a framework using symbolic execution
to analyze Bytecode without the need for source codes. This
framework can detect eight types of attacks in SCs and get an
F1-score of 88%. Unlike all the above works and others in the
literature, in this paper, we introduce an innovative ML-based

framework to analyze Bytecode directly from transactions
without the need for source code. To do this, we propose to
convert the encoded information of transactions into images.
Our proposed framework can analyze these images to detect
various types of attacks in both transactions and SCs. In this
way, our proposed framework is flexible and makes detecting
new types of attacks easier. Moreover, all of the methods above
focus on centralized learning. To implement those methods,
all the data needs to be gathered in a centralized server for
learning and analysis. However, blockchain is a decentralized
environment and MNs are distributed worldwide.Thus, gath-
ering all blockchain data to perform training and testing is
difficult.

III. BLOCKCHAIN SYSTEM: FUNDAMENTAL AND
PROPOSED COLLABORATIVE LEARNING FRAMEWORK

A. Blockchain

Blockchain technology is a decentralized method to store
and manage data. In a blockchain system, each MN can
be used to store and process data. When an MN receives
transactions, it typically groups them into a block as a part
of the mining process. However, it is worth noting that the
consensus mechanism is responsible for managing the rules of
the mining process in a blockchain network. There are various
types of consensus mechanisms being used in blockchain
networks [12]. For example, Ethereum 2.0 uses Proof of
Stake (PoS) [13] as its consensus mechanism for the mining
process. In PoS, a validator, who is responsible for proposing
a new block, is randomly selected based on the amount of
staked ETH in users’ deposits. When the mining process
is completed, the valid block is added to the main chain
of blocks. After that, the block is irreversible to ensure the
integrity of transactions in a blockchain. Another characteristic
of blockchain is transparency which enables all MNs to access
the history of transactions within a blockchain network. This

4

transparency ensures total transaction records are visible to all
MNs and promotes trust in the blockchain network. Overall,
blockchain possesses numerous valuable characteristics, in-
cluding decentralization, transparency, immutability, and data
tamper resistance, making it applicable across various sectors
to enhance human life.

B. Designed Blockchain System and Our Proposed Collabo-
rative Learning Framework

In our laboratory, we set up experiments to collect datasets
for training and testing our framework. We first deploy a
blockchain system based on a private Ethereum network in
our laboratory (more details are shown later in Fig. 4). This
network uses the latest version of the Ethereum network
(i.e., Ethereum 2.0). This version uses Proof-of-Stake (PoS)
as a consensus mechanism for validating new blocks. Our
system includes various MNs, to collect data from their local
networks, and bootnodes, the management nodes to connect
MNs together. The MNs can receive transactions from various
types of blockchain applications such as smart cities, smart
agriculture, IoT, and cryptocurrency. As described above, the
transactions are first sent to MNs. They are then put into
a block, and the MNs will perform the mining process to
put them into the main chain. We perform various attacks
using malicious transactions and SCs on this system. These
attacks (i.e., DoS with block gas limit, overflows and un-
derflows, flooding of transactions, re-entrancy, delegatecall,
and function default visibility) happened and caused serious
damage to blockchain systems [14]. Through experiments, we
build a state-of-the-art dataset with both normal and attacked
transactions and SCs to evaluate the performance of attack
detection methods.

In this paper, we consider a blockchain system with T MNs
working in a blockchain system as described in Fig. 1. When
an MN receives transactions from the blockchain network, it
uses BCEC (the tool that we developed in our laboratory)
to preprocess them by extracting information from important
features and then converting them to grey images. After that,
we propose a collaborative learning framework for analyzing
the images to detect insight attacks in transactions and SCs. In
our framework, each MN uses its local dataset to train a deep
neural network. After the training process, each MN shares
its trained model with other nodes and also receives their
trained models in return. Afterward, every MN aggregates all
the received trained models from other nodes together with
its current trained model to generate a new global model
for further training (we will explain more details in the next
section). In this way, MN can exchange its learning knowledge
with the neural network of other MNs. This approach can not
only improve the overall learning knowledge of the neural
network of all MNs but also protect the privacy of local data
over network transmission. By preventing the transmission of
the local data of each MN over the network, our approach
can also reduce network traffic to avoid network congestion.
Thus, the neural networks of MNs can improve the accuracy
of detecting attacks for transactions and SCs in blockchain
systems.

IV. PROPOSED ATTACK DETECTION FRAMEWORK

In our proposed attack detection framework, the MNs are
used to learn and share their learning knowledge with others
to improve the accuracy of their attack detection. At each MN,
we propose to use a deep neural network as a detector to learn
the data of the MN’s local system. After that, the MN exchange
its learning knowledge (i.e., trained model) with other MNs.
When an MN receives trained models from others, it will
integrate them with its current model to train its local dataset.
This process is iteratively repeated until reaching a predefined
number of iterations. In summary, our proposed framework
includes three processes. The first process is preprocessing. In
this process, our proposed framework captures and extracts the
important information of the incoming transactions and then
converts them to grey images. The second process is to develop
a deep convolution neural network to classify the grey images
to detect attacks. The last process is collaborative learning. In
this process, each MN can exchange the trained model with
others to improve the accuracy of attack detection.

A. Preprocessing Process

Fig. 2 describes our proposed preprocessing process for
transactions in a blockchain system. The main purposes of
the preprocessing process are extracting the important features
from incoming transactions and converting them into images
for further processing. It is worth noting that SCs are a set
of agreements to deploy transactions. For implementation, a
server has to send transactions of the SCs to the MN for
a mining process. From the MN point of view, we only
can observe transaction hashes (i.e., the unique addresses of
incoming transactions) which are represented in a series of
hexadecimal numbers. The preprocessing process has three
steps to deal with these transaction hashes as follows:

• Step 1: Capture transaction hashes from the MN and then
recover transactions from transaction hashes to have the
full information of all features in transactions such as
content, value, block hash, block number, chainID, etc.

• Step 2: Extract the content of two crucial features in
transactions named Bytecode and value. The bytecode
feature includes the main functions of transactions and
the value feature indicates the amount of ETH (Ethereum)
involved in a transaction. Although we can effectively
use the bytecode feature in detecting various types of
attacks in transactions and SCs, it does not provide
any information in some specific types of attacks, such
as Flooding of Transactions [15], where the transaction
content is null. Thus, it may be inefficient if we only
rely on the bytecode feature for analysis. Therefore, we
propose to enhance the attack detection framework by
incorporating information from the value feature (we will
justify its benefits in section V). After that, we apply
appropriate preprocessing methods to the corresponding
features as follows:

– Bytecode feature: Extract the content and then
transform them into opcode using EVM Bytecode
Decompiler [16]. The opcode is a series of executed
comments in assembly. Thus, we propose to convert

5

0xfa8971db8
701f7b4574c
75946f891f71
698ff0df5aa6
87196c2bd89

3acde94e7

0xe46000000000000
00000006bb1d77528
0ea41d0be9d89bfc24

618efe55aab1

57908Transaction
hash Transaction

Bytecode

Value

[2] PUSH1 0x00
 ...
[27] PUSH2 0x8efe
[28] SSTORE

Opcode

Grey
Image 2

Grey
Image 1

Final Grey
Image Convolutional

Neural
Network

67.47

Scaled
Value

Fig. 2: The preprocessing process of our proposed framework. Our developed BCEC tool first collects the transactions in
mining nodes. It then extracts the content of transactions to find “Bytecode” and “Value”. After that, this tool converts them
into images for further processing.

all features of this assembly code to a grey image
named Grey Image 1.

– Value feature: we first scale its content to an ap-
propriate range and then convert it to another grey
image named Grey Image 2.

• Step 3: In this step, we combine both Grey Image 1
and Grey Image 2 to create the Final Grey Image. This
Final Grey Image includes all essential information of a
transaction and an SC in the blockchain system. They can
be used to train the deep convolution neural network to
find out the hidden attacks inside.

In this framework, all these steps are encapsulated in
the BCEC tool. This tool can perform the preprocessing
process in real-time to support the analysis of collaborative
attack detection to detect hidden attacks for transactions and
SCs in a blockchain system.

B. Learning Process

In our proposed framework, at each MN, we implement
a detector that can help to detect attacks based on the grey
images from the preprocessing process with high accuracy.
The core component of the detector is developed based on a
Deep Convolutional Neural Network (CNN). The reason for
using CNN is that this framework can classify a large amount
of labeled data, especially in image classification with high
accuracy [17]. Additionally, the CNN model does not have to
learn their local data separately, it can exchange its trained
model with other MNs to improve the learning knowledge as
well as enhance the accuracy of attack detection. In detail, the
architecture of CNN in an MN includes three types of layers,
i.e., convolution layer, max pooling layer, and fully connected
layer [17]. Fig. 3 describes the layer of a CNN in an MN.
These layers can be described as follows:

• Convolution layer: The neurons in this layer learn the
feature representation of input images. The neurons in
this layer are formed in feature maps. In addition, these
feature maps can connect with others of the previous
layer by weight parameters called filter banks [18]. In
this layer, the input is convoluted with weight parameters
in every iteration to create feature maps.

• Max pooling layer: The main purpose of this layer is
to reduce the resolution of feature maps in the previous

layer. To do this, this layer selects the largest values in
areas of feature map [17] and then sends them to the next
layer.

• Fully connected layer: This layer performs classification
functions for the neural network. In this layer, the feature
maps from previous layers are first flattened. They are
then put into a fully connected layer for classification.
The softmax function is included at the end of this layer
to produce the output in normal behavior or a type of
attack.

We denote D as a local dataset of an MN to train a CNN. D
includes I images and Y labels so we can denote D = (I,Y).
We consider n = {1, .., N} as the training layer of the neural
network. The output of a convolution layer n can be calculated
as follows [19]:

In+1 = γn

(
In ∗ F

)
, (1)

where (∗) is the convolutional operation, γn is the activation
function and F is the filter bank. After that, the output of the
convolution layer is put into a max pooling layer. The output
of a max pooling layer can be calculated as follows:

In+2 = α
(
In+1

)
, (2)

where α is the max pooling function that selects the maximum
value in a pooling area. We denote Ie as the last image
after processing with multiple convolution layers and max
pooling layers. This image is put into a softmax function to
classify and produce the output in the fully connected layer.
We consider l ∈ {1, ..., L} as the classification group number,
the probability that an output image Ŷ belongs to group l can
be calculated as follows:

p(Ŷ = l|Ie,W e, be) = softmax(W e, be)

=
eW eIe+be∑
l e

W e,lIe+be,l
,

(3)

where W e, be are the weights and biases of the fully con-
nected layer, respectively. Based on equation (3), we can
calculate a vector of prediction Ŷ which includes output
images Ŷ belonging group l with probability p as follows:

Ŷ = argmax
l

[p(Ŷ = l|Ie,W e, be)], (4)

6

Normal

Reentrancy

OaU

FDV

Input
Image

1st Convolution
layer

1st Max Pooling
layer

Flatten

2nd Convolution
layer

2nd Max Pooling
layer

Fully Connected
layers

Fig. 3: The architecture of a CNN model. The convolution layer learns the feature representation of the input. The Max pooling
layer reduces the resolution of the feature map in the previous layer. The Fully connected layer performs classification functions
to produce output.

In this stage, we compare the output predictions with the
labels using a sparse categorical cross-entropy function to
calculate the loss for backpropagation. The loss function can
be calculated as follows:

J(W) = −
L∑

l=1

Yl log Ŷl, (5)

We denote W as the model of the neural network. Based
on equation (5), we can calculate the gradient of this function
as follows:

∇θ =
∂J(W)

∂W
= −

∂
(∑L

l=1 Yl log Ŷl

)
∂W

,
(6)

After having the gradient based on equation (6). We then
use it for the Adam optimizer to update the parameters of
the neural networks. We consider m and v as the moment
vectors of the next iteration i+1 of the Adam optimizer. The
mi+1 and vi+1 can be calculated from the gradient and Adam
functions [20] as mi+1 = A1(∇θ) and vi+1 = A2(∇θ). A
new global model in the next iteration i+1 can be calculated
as follows:

Γi+1 = Γi − βi+1
mi+1√
vi+1

= Γi − βi+1
A1(∇θ)√
A2(∇θ)

,
(7)

where Γi+1 is the new optimal trained model of an MN,
βi+1/

√
vi+1 is the learning rate.

C. Collaborative learning Process

In this paper, we propose a Collaborative Deep Convolu-
tional Neural Network framework (Co-CNN) to detect the
different types of attacks in a blockchain network. In this
framework, each MN has a CNN model to train and test
its dataset. The CNN model can receive trained models from
other MNs to improve the accuracy of attack detection. To do

Algorithm 1 The learning process of Co-CNN model

1: while i ≤ maximum number of iterations do
2: for ∀t ∈ T do
3: The CNN of the MN-t learns Dt to produce Ŷ .
4: The MN-t creates gradient θt and sends it to others
5: The MN-t receives T − 1 gradients from others.
6: MN calculates a new optimal trained model Γi+1.
7: end for
8: i = i+ 1.
9: end while

10: MN uses its optimal model Γoptimal to detect attacks
based on input grey images.

this, the CNN model of an MN first gets the trained model
(gradient) based on equation (6). It then sends the trained
model to other MNs and receives trained models from others.
We consider at iteration i, an MN receives T−1 trained models
from others. It can update its trained model using the following
formulas [21]:

θi+1 =
1

T

T∑
t=1

θt,i. (8)

After updating the trained model, each MN will calculate
a new global model using equation (7). This process continu-
ously repeats until the algorithm converges or the reaching the
predefined maximum number of iterations. After the training
process, we can obtain the optimal trained model in each MN
to analyze and detect the attacks inside a series of grey images.
This process is summarized in Algorithm 1.

V. EXPERIMENT AND PERFORMANCE ANALYSIS

A. Experiment Setup

In our experiments, we set up an Ethereum 2.0 system in
our laboratory as shown in Fig. 4. This version of Ethereum
uses a new consensus mechanism namely Proof-of-Stake (PoS)

7

Fig. 4: Real experiment setup.

instead of Proof-of-Work (PoW). There are five Ethereum
nodes, two bootnodes, a trustful device, and an attack device
in our experiments. All these devices are connected to a Cisco
switch, which serves as the central hub for our local network.
The configuration of these devices is as follows:

• Ethereum nodes are launched by Geth v1.10.22 - an
official open-source implementation of Ethereum net-
work [22] and Prysm v3.2.0 - an official implementation
of the PoS consensus mechanism in Ethereum 2.0 [23].
They share the same genesis configurations, e.g., chainID,
block gas limit at 30,000,000 gas, etc. The configurations
of nodes 1, 2, and 3 are workstation computers with pro-
cessor Intel Core i9-10900 @5.2 GHz, RAM of 64 GB.
The configurations of nodes 4 and 5 are personal com-
puters with processor Intel Core i7-4810MQ @3.8 GHz,
RAM of 16 GB.

• Geth bootnode and Prysm bootnode are also created
by Geth v1.10.22 and Prysm v3.2.0, respectively. They
are responsible for connecting all the Ethereum nodes
together.

B. Dataset Collection
According to the detailed analysis of the public Ethereum

network on transaction behavior [24], the addresses that are
associated with less than 10 transactions account for 88% of
total addresses. About 50% received addresses appear only
one time for a transaction in history. This is because most
people want to create transactions anonymously. Therefore, to
create diversity and reality for our dataset, we need to create
a large number of unique accounts (i.e., 10,000 accounts in
our experiments) to send transactions to Ethereum nodes. A
truthful server, as shown in Fig. 4, randomly selects accounts
from these accounts to create transactions for the blockchain
system.

1) Normal State: For the normal state, we use OpenZep-
pelin Contracts [25] library as the secured SCs. Two types of
transactions below are used to generate samples randomly for
the normal state.

• Exchange ETH: On the public Ethereum network, most
transactions only exchange the ETH to another address

without any bytecode. This kind of transaction accounts
for 75% of the total samples of the normal state in our
experiment.

• Transactions-related SCs: There are two types of these
transactions: The transactions for deploying SCs and
the transactions that interact with functions in deployed
SCs. We perform three essential SCs’ categories in the
Ethereum system, i.e., Tokens/Coins/NFT, Ethereum 2.0
deposit, and SCs for other purposes.

Although the number of original SCs is minuscule com-
pared to the total transactions in the dataset. The content of
transactions and deployed SCs are not duplicated. Because we
randomly select not only the senders and recipients but also
the amount of ETH and inputs of functions in any generated
transaction.

2) Attack States: SCs have a number of vulnerabilities
listed in SWC [3] because of programmers, consensus mecha-
nisms, and compilers. Attackers can exploit these weaknesses
of SC to perform attacks and then steal money in blockchain
systems [14]. In this work, we regenerate several real-world
attacks from the tracks that they left on Ethereum’s ledger.
We give a brief description of the six types of application
layer-based attacks.

• DoS with Block Gas Limit (DoS): There are several
functions inside SCs. These functions can be temporarily
disabled when their gas requirements exceed the block
gas limit. A DoS case occurred in 2015 when SC Gov-
ernMental’s 1,100 ETH jackpot payout was stuck [3].
The GovernMental SC is deployed in our work, and
we continuously join the jackpot to disable the payout
function.

• Overflows and Underflows (OaU): In solidity language,
if a variable is out of its range, it is in the overflow
or underflow state. In this case, the variable is turned
to another value (e.g., 0 for overflow and 2256 − 1
for underflow). Attackers can use this vulnerability to
bypass SCs’ conditions when withdrawing funds. For
example, they can bypass the requirements of checking
their accounts’ balances. Several real OaU attacks were
detected, e.g., 2256 BEC tokens, CSTR token, $800k USD
of PoWH token [5], and so on [3]. We re-perform the
above OaU attacks on their original SCs in the dataset.

• Flooding of Transactions (FoT): Attackers spam a number
of meaningless transactions to delay the consensus of
blockchain networks. Such an attack caused the unconfir-
mation of 115k Bitcoin transactions in 2017 [15]. In our
setup, FoT attacks are generated by continuously sending
a negligible amount of ETH from a random sender to
another arbitrary recipient.

• Re-entrancy (Re): When the SCs do not update their states
before sending funds, attackers can recursively call the
withdraw function to drain the SCs’ balances. Two types
of Re are single-function and cross-function. The single-
function type happened and led to a loss of 3.6 million
ETH in 2016. Both types of Re are performed in our
dataset [3].

• Delegatecall (DeC): delegatecall() is the mechanism to

8

TABLE I: Number of samples on the proposed ABTD dataset.

Class Number of samples Portion (%)
Normal 152,423 50.34
DoS 22,994 7.59
OaU 29,254 9.66
FoT 41,732 13.78
Re 22,682 7.49
DeC 22,455 7.41
FDV 11,209 3.73
Total 302,749 100

inherit functions, storage, and variables from other de-
ployed SCs. If the inherited SCs are attacked, they will
in-directly affect the main SC. To implement, we re-create
the 2nd Parity MultiSig Wallet attack [3]. In this attack,
attackers took control and suicide the inherited SC.

• Function Default Visibility (FDV): If the programmers
do not define the visibility of functions in SCs, it will
default to the public. Thus, anyone can interact with those
functions. For implementation, we perform the 1st Parity
MultiSig Wallet attack [3]. In this attack, attackers took
control of this SC through an FDV flaw.

Table I shows the number of samples in each class of our
proposed dataset. The proportions of the samples in the classes
are not balanced, e.g., the number of Re samples is twice that
of FDV. Because Re requires a series of attack transactions
instead of only one attack transaction as in FDV.

C. Evaluation Methods

The confusion matrix [26], [27] is widely used to evaluate
the performance of machine learning models. We denote
TP, TN, FP, and TN as “True Positive”, “True Negative”,
“False Positive”, and “True Negative”. In this paper, we use
ubiquitous parameters (i.e., accuracy, precision, recall) in the
confusion matrix to evaluate the performance of models. The
accuracy of a model can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (9)

In addition, we use the macro-average precision and macro-
average recall to evaluate the performance of the models. With
L as the number of classification groups (i.e., the total number
of normal and attack states), the macro-average precision is
calculated as follows:

Precision =

L∑
l=1

TPl

TPl + FPl
. (10)

The macro-average recall of the total system can be calcu-
lated as follows:

Recall =
L∑

l=1

TPl

TPl + FNl
. (11)

D. Simulation and Experimental Results

In this section, we present the simulation and real-time
experimental results of our experiments. In particular, we

use the confusion matrix to evaluate our proposed model’s
performance (in terms of accuracy, precision, and recall)
compared to the centralized model.

Accuracy Precision Recall
0

20

40

60

80

100

72.16

58.91 58.64

93.85
90.41 89.74

Pe
rc

en
ta

ge

Centralized-CNN w/o-V
Centralized-CNN w/-V

Fig. 5: The results of the preprocessing processes in different
schemes.

1) Preprocessing Analysis: In this section, we compare
our proposed model in two schemes. We use our proposed
preprocessing process in the first scheme as in Fig. 2. In the
second scheme, we eliminate the value feature and use only
the Bytecode preprocessing to analyze the transactions and
SCs. Though the results of these schemes, we demonstrate the
efficiency of our proposed preprocessing process in combining
various features of transactions. We use CNN to classify differ-
ent types of cyberattacks and normal behavior in transactions
and SCs. Fig. 5 describes the accuracy results of two schemes.
In this figure, the model w/-V has accuracy, precision, and
recall at 93.849%, 90.413%, and 89.742%, respectively. These
results outperformed the model w/o-V which has accuracy,
precision, and recall at 72.163%, 58.911%, and 58.638%,
respectively. Especially, Fig. 6 provides detailed information
for all types of attacks and normal behavior. In Fig. 6, we can
see that the model w/o-V cannot detect DoS and FoT attacks
because it classifies all samples of DoS and FoT attacks into
normal behavior. In contrast, the model w/-V can detect these
types of attacks with high accuracy at about 97% for DoS
detection and 100% for FoT detection. This is because the
value feature is essential to support the learning models to
detect many types of important attacks.

2) Accuracy Analysis: In this section, we perform exper-
iments to compare the performance results of the central-
ized model with our proposed model. The centralized model
(Centralized-CNN) that we design can learn knowledge from
all MNs for training and testing processes. Besides, we use
different schemes of the collaborative learning model with
3 mining nodes (Co-CNN-3), 5 mining nodes (Co-CNN-5),
and 10 mining nodes (Co-CNN-10). In each scheme, the
collected datasets are divided equally among all mining nodes.
To implement experiments, we first perform cyberattacks
on transactions and SCs in our deployed private Ethereum

9

Normal
29699
97%

4203
100%

488
8%

8327
100%

1632
36%

0
0%

0
0%

Normal

DoS

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS

OaU

852
3%

0
0%

5333
91%

0
0%

0
0%

0
0%

0
0%

OaU

FoT

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

FoT

Re

2
0%

0
0%

30
1%

0
0%

2867
64%

0
0%

2
0%

Re

DeC

1
0%

0
0%

1
0%

0
0%

0
0%

3895
88%

672
29%

DeC

FDV

1
0%

0
0%

0
0%

0
0%

1
0%

549
12%

1620
71%

FDV

T
ru

e
la
b
e
l

Predicted label

(a)

Normal
29347
97%

0
0%

227
4%

0
0%

946
21%

0
0%

0
0%

Normal

DoS

35
0%

4198
100%

0
0%

94
1%

0
0%

0
0%

0
0%

DoS

OaU

839
3%

0
0%

5606
96%

0
0%

0
0%

0
0%

1
0%

OaU

FoT

0
0%

0
0%

0
0%

8233
99%

0
0%

0
0%

0
0%

FoT

Re

20
0%

5
0%

0
0%

0
0%

3554
79%

0
0%

0
0%

Re

DeC

5
0%

0
0%

1
0%

0
0%

0
0%

3897
88%

670
29%

DeC

FDV

2
0%

0
0%

1
0%

0
0%

0
0%

547
12%

1620
71%

FDV

T
ru

e
la
b
e
l

Predicted label

(b)

Fig. 6: The detection results of the models w/ and w/o-V feature. (a) Centralized-CNN w/o-V. (b) Centralized-CNN w/-V.

platform to collect datasets from all MNs. In our proposed
collaborative learning model, each MN uses its local dataset
for both training and testing processes. However, in the
training process, the MNs can exchange their trained models
with others to improve their learning knowledge as well
as the accuracy of attack detection. On the other hand, in
the Centralized-CNN, all the local datasets of MNs will be
gathered into a big dataset for its training and testing process.

The performance results of two scenarios of preprocessing
processes (i.e., without value feature (w/o-V) and with value
feature (w/-V) with all schemes are also provided in Table II
and Table III. Table II presents the performance of the sim-
ulation results of all schemes with the w/o-V preprocessing
process. In Table II, the accuracy, precision, and recall are
nearly the same at around 72-73%, 58-59%, and 58-59%,
respectively. In contrast, in Table III, we can observe that
the performance of all schemes with the w/-V preprocessing
process outperforms those w/o-V preprocessing process at
about 93-94%, 90-91%, and 89-90% in accuracy, precision,
and recall, respectively. In detail, we first can see in Table III
that the performance results of our proposed models are nearly
the same as the Centralized-CNN. However, in some MNs
such as MN-5 of the Co-CNN-5, the accuracy, precision,
and recall are higher than those of the Centralized-CNN
at around 0.6%, 0.6%, and 0.7%, respectively. Specifically,
Fig. 7 provides detailed information for each type of attack of
the Centralized-CNN and MN-5 of Co-CNN-5. These figures
show that the misdetection of MN-5 of the Co-CNN-5 is
dramatically reduced compared to the Centralized-CNN. In
detail, the misdetection of the MN-5 from Normal to DoS is
at 0.88% which is smaller than that of the Centralized-CNN
at 1.14%. Similarly, the misdetection of the MN-5 from OaU
to Normal is at 0.926% of total samples of OAU which is
smaller than that of the Centralized-CNN at 3.89%.

3) Convergence Analysis: In this section, we compare the
convergence of different models, i.e., the Centralized-CNN,
and the collaborative model with 3, 5, and 10 mining nodes.
Fig. 8 describes the accuracy and loss of these models in

1,000 iterations. In general, all of the models converged after
about 800 iterations in terms of accuracy and loss. While the
accuracies of Centralized-CNN, Co-CNN-3, and Co-CNN-5
models fast reach the convergence after 400 iterations at about
93%, the accuracies of Co-CNN-10 need about 800 iterations
to converge and reach 93%. The same trends happen with the
loss. This is because the number of samples of each MN in Co-
CNN-10 is much smaller than those of other models while the
number of workers is higher than those of other models. Thus,
Co-CNN-10 needs more time to exchange learning knowledge
with other models. It finally reaches convergence after about
800 iterations and has accuracies nearly the same as other
models.

4) Real-time Attack Detection: In this section, we con-
sider a practical scenario by evaluating the performance of
the system in real-time cyberattack scenarios. To do this,
we first take the trained models from all schemes (noted
that the trained modes are trained in the schemes as in
the accuracy analysis, i.e., Centralized-CNN, Co-CNN-3, Co-
CNN-5). There are 5 blockchain nodes participating in these
experiments and they join a private Ethereum network as
described in the above section. After the learning models
are trained, they are deployed on MNs. In the experiments,
both two cases with value and without value preprocessing
processes are considered. In real-time scenarios, both normal
and attack samples continuously come to the blockchain node.
Thus, the BCEC has to collect all the transaction traffic in
3 seconds into a package and then convert them into images.
All processes including preprocessing (i.e., converting samples
into images) and processing (i.e., model prediction) must be
completed within 3 seconds before the next package comes.

Table IV presents the performance of Co-CNN-3, Co-CNN-
5, and Centralized-CNN models in two cases of preprocessing.
In general, we can observe in Table IV(a) that the performance
of these models in accuracy, precision, and recall w/-V in the
preprocessing process is at about 88-91%, 76-80%, and 77-
79%, respectively. These results outperform those of the w/o-V
in preprocessing process with accuracy, precision, and recall at

10

TABLE II: Simulation results w/o-V with Centralized-CNN, Co-CNN-3, Co-CNN-5, and Co-CNN-10 models.

Centralized-CNN Co-CNN-3 Co-CNN-5
MN-1 MN-2 MN-3 MN-1 MN-2 MN-3 MN-4 MN-5

Accuracy 72.163 71.686 71.761 72.080 72.735 72.519 72.211 72.760 72.627
Precision 58.911 58.323 58.298 58.646 59.676 59.300 58.818 59.699 59.032
Recall 58.638 57.539 57.951 58.608 58.955 58.807 58.415 59.444 58.969

Co-CNN-10
MN-1 MN-2 MN-3 MN-4 MN-5 MN-6 MN-7 MN-8 MN-9 MN-10

Accuracy 72.768 73.333 73.184 73.117 73.150 72.984 73.017 73.267 73.516 73.117
Precision 58.169 59.462 59.107 58.957 58.779 58.621 58.288 59.503 59.013 59.125
Recall 58.131 58.531 58.462 58.727 58.775 58.285 58.528 59.066 59.192 58.650

TABLE III: Simulation results w/-V with Centralized-CNN, Co-CNN-3, Co-CNN-5, and Co-CNN-10 models.

Centralized-CNN Co-CNN-3 Co-CNN-5
MN-1 MN-2 MN-3 MN-1 MN-2 MN-3 MN-4 MN-5

Accuracy 93.849 93.88 94.384 94.115 94.347 94.057 94.148 94.206 94.439
Precision 90.413 90.216 91.162 90.860 90.794 90.540 90.637 90.903 91.029
Recall 89.742 89.665 90.688 89.970 90.329 89.932 90.025 90.514 90.536

Co-CNN-10
MN-1 MN-2 MN-3 MN-4 MN-5 MN-6 MN-7 MN-8 MN-9 MN-10

Accuracy 93.633 94.248 93.849 93.566 93.899 93.832 93.516 93.732 93.699 93.849
Precision 89.326 90.611 90.095 89.969 90.106 90.048 89.252 90.684 89.778 90.464
Recall 89.206 89.716 89.313 89.114 89.745 89.289 89.213 89.464 89.298 89.477

Normal
29347
97%

0
0%

227
4%

0
0%

946
21%

0
0%

0
0%

Normal

DoS

35
0%

4198
100%

0
0%

94
1%

0
0%

0
0%

0
0%

DoS

OaU

839
3%

0
0%

5606
96%

0
0%

0
0%

0
0%

1
0%

OaU

FoT

0
0%

0
0%

0
0%

8233
99%

0
0%

0
0%

0
0%

FoT

Re

20
0%

5
0%

0
0%

0
0%

3554
79%

0
0%

0
0%

Re

DeC

5
0%

0
0%

1
0%

0
0%

0
0%

3897
88%

670
29%

DeC

FDV

2
0%

0
0%

1
0%

0
0%

0
0%

547
12%

1620
71%

FDV

T
ru

e
la
b
e
l

Predicted label

(a)

Normal
5891
96%

0
0%

11
1%

0
0%

184
21%

0
0%

0
0%

Normal

DoS

54
1%

839
99%

0
0%

20
1%

0
0%

0
0%

0
0%

DoS

OaU

161
3%

0
0%

1176
99%

0
0%

0
0%

0
0%

0
0%

OaU

FoT

0
0%

0
0%

0
0%

1641
99%

0
0%

0
0%

0
0%

FoT

Re

7
0%

5
1%

0
0%

0
0%

681
79%

0
0%

0
0%

Re

DeC

0
0%

0
0%

0
0%

0
0%

0
0%

804
88%

123
27%

DeC

FDV

1
0%

0
0%

0
0%

0
0%

0
0%

111
12%

329
73%

FDV

T
ru

e
la
b
e
l

Predicted label

(b)

Fig. 7: The detection results of Centralized-CNN and Co-CNN-5 models. (a) Centralized-CNN w/-V. (b) Co-CNN-5 w/-V.

about 65-66%, 44-51%, and 48-51%, respectively. In addition,
when we compare the same case w/-V in preprocessing
process of the simulation as in Table III and the real-time
experimental results as in Table IV(a), we can observe that the
accuracy, precision, recall of the real-time experimental results
are little smaller than those of simulation results about 3%,
10%, and 11%, respectively. This is because, in simulation,
we implement multiple types of attacks on the blockchain
system and then collect data to have enough samples for the
dataset to train the model. However, in real-time scenarios,
some attack types, such as Re, DeC, and FDV, rarely appear
during the experiment. Thus, it makes more difficult for the
learning models to detect them in real-time.

Specifically, we can observe in Table IV(a) that MN-4 of
Co-CNN-5 has higher performance in accuracy, precision, and
recall than MN-4 of the Centralized-CNN about 1.3%, 4%, and

2%, respectively. Therefore, in real-time detection scenarios,
our proposed model still demonstrates better performance in
detecting attacks than in simulation.

5) Real-time Monitoring and Detection: Fig. 9 shows the
real-time cyberattack monitoring from the output of our pro-
posed model Co-CNN-5 in Ethereum node 1. In these figures,
the normal and each type of attack are displayed in different
lines. Fig. 9(a) displays the normal state of the system with
the high value of the predicted normal state over time. We can
observe that in the normal state, the predicted states of all types
of attacks are nearly 0. When a type of attack happens, the
predicted state of that attack will increase, e.g., the FoT attack
state as in Fig. 9(d). As described in the previous section,
in real-time scenarios, RE, Dec, and FDV attack states have
a little number of attack samples. Therefore, their predicted
states in Fig. 9(b), Fig. 9(f) and Fig. 9(g) do not have high

11

0 200 400 600 800 1000

0.7

0.75

0.8

0.85

0.9

0.95

(a)

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

Fig. 8: The convergence of accuracy and loss over iterations: (a) The accuracy over interactions, and (b) The loss over iterations.

TABLE IV: Real-time experiment results.

(a) Centralized-CNN and Co-CNN w/-V

Centralized-CNN Co-CNN-3 Co-CNN-5
MN-1 MN-2 MN-3 MN-4 MN-5 MN-1 MN-2 MN-3 MN-4 MN-5 MN-1 MN-2 MN-3 MN-4 MN-5

Accuracy 89.603 89.542 89.668 89.702 89.291 88.663 88.582 88.655 88.794 88.471 90.928 90.896 90.957 91.061 90.614
Precision 76.851 75.806 76.956 76.690 75.582 76.755 75.872 76.845 77.191 75.912 80.192 78.835 80.469 80.846 78.576
Recall 76.858 77.117 76.888 76.767 76.822 78.523 78.939 78.531 78.563 78.724 78.870 79.044 78.757 78.762 78.747

(b) Centralized-CNN and Co-CNN w/o-V

Centralized-CNN Co-CNN-3 Co-CNN-5
MN-1 MN-2 MN-3 MN-4 MN-5 MN-1 MN-2 MN-3 MN-4 MN-5 MN-1 MN-2 MN-3 MN-4 MN-5

Accuracy 65.877 65.780 65.643 66.312 65.734 66.804 66.640 66.569 67.115 66.797 65.606 65.579 65.512 66.212 65.830
Precision 47.263 46.105 46.739 47.544 46.012 51.442 50.024 51.116 51.641 50.433 44.668 44.078 44.534 44.994 44.141
Recall 51.383 51.576 51.434 51.318 51.427 49.670 49.888 49.586 49.557 49.625 48.447 48.544 48.381 48.372 48.518

values. However, our proposed model can still detect all of the
attacks in real-time with high accuracy at 91%.

6) Processing Time: Fig. 10 describes the processing time
of two MNs with the same Co-CNN-5 model. We can observe
in Fig. 10 that when the number of transactions increases,
the processing time of both MNs also linearly increases.
However, there is a different capacity between the two MNs.
In detail, while MN-5 can process about 1,100 transactions
per second, the number of transactions that MN-1 can process
is around 2,150 transactions per second. This is because of
the different types of computer configuration between the
two MNs described in section V-A. However, in the mainnet
of the Ethereum system, the maximum recorded number of
transactions is 93.01 per second [28]. Therefore, the capacity
of our proposed system can be well-adapted to detect attacks
on the mainnet Ethereum system.

VI. CONCLUSION

In this work, we developed a collaborative learning model
that can efficiently detect malicious attacks in transactions
and smart contracts in a blockchain network. To do this, we
implemented a private Ethereum network in our laboratory.

We then performed attacks in transactions and SCs of that
network for analysis. Next, we analyzed the transaction data
and extract the important features (i.e., Bytecode and value) to
build the dataset. After that, we converted the dataset into grey
images to train and evaluate the performance of our proposed
model. In our proposed model, a learning node can detect
the attacks in transactions and SCs of a blockchain network
and receive and aggregate learning knowledge (i.e., trained
models) from other learning nodes to improve the accuracy of
detection. In this way, our proposed model does not expose
the local data of learning nodes over the network, thereby
protecting the privacy of the local data of learning nodes. Both
simulation results and real-time experimental results showed
the efficiency of our proposed model in detecting attacks. In
the future, we will continue studying to develop other methods
for detecting attacks in various kinds of networks.

REFERENCES

[1] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
Jun. 2019.

[2] V. Buterin, “Ethereum: A next-generation smart contract and decentral-
ized application platform,” Ethereum Foundation, Tech. Rep., Jan. 2014.

12

16:29:00 16:29:15 16:29:30

Time

0

10

20

30

40

P
re

d
ic
te

d
st

a
te

(t
ra

n
sa

ct
io

n
s)

(a) Normal state

13:36:00 13:36:30 13:37:00 13:37:30

Time

0

10

20

30

40

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

(b) Re attack state

02:19:45 02:20:00 02:20:15

Time

0

10

20

30

40

P
re

d
ic
te

d
st

a
te

(t
ra

n
sa

ct
io

n
s)

(c) OaU attack state

00:51:15 00:51:30 00:51:45

Time

0

10

20

30

P
re

d
ic
te

d
st

a
te

(t
ra

n
sa

ct
io

n
s)

(d) FoT attack state

01:12:00 01:12:15 01:12:30

Time

0

10

20

30

40

P
re

d
ic
te

d
st

a
te

(t
ra

n
sa

ct
io

n
s)

(e) DoS attack state

01:35:45 01:36:00 01:36:15

Time

0

10

20

30

40

P
re

d
ic
te

d
st

a
te

(t
ra

n
sa

ct
io

n
s)

(f) DeC attack state

01:59:00 01:59:15 01:59:30

Time

0

10

20

30

P
re

d
ic
te

d
st

a
te

(t
ra

n
sa

ct
io

n
s)

(g) FDV attack state

Normal Re OaU FoT DoS DeC FDV

Fig. 9: Real-time cyberattack detection: proposed Co-CNN-5 model in Ethereum node 1.

Fig. 10: Throughput of proposed Co-CNN-5 model in two
computer configurations.

[3] SmartContractSecurity, “SWC Registry - Smart Contract Weakness
Classification and Test Cases,” Accessed: Sept. 18, 2022. [Online].
Available: https://swcregistry.io

[4] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang,
“Blockchain-enabled smart contracts: architecture, applications, and
future trends,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 11, pp. 2266–2277, Feb. 2019.

[5] E. Banisadr, “How $800k Evaporated from the PoWH Coin Ponzi
Scheme Overnight,” Accessed: Feb. 13, 2023. [Online]. Avail-
able: https://medium.com/@ebanisadr/how-800k-evaporated-from-the-
powh-coin-ponzi-scheme-overnight-1b025c33b530

[6] J. Huang, S. Han, W. You, W. Shi, B. Liang, J. Wu, and Y. Wu, “Hunting
vulnerable smart contracts via graph embedding based bytecode match-
ing,” IEEE Transactions on Information Forensics and Security, vol. 16,
pp. 2144–2156, Jan. 2021.

[7] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:
Automated smart contract defect detection by analyzing evm bytecode,”

IEEE Transactions on Software Engineering, vol. 48, no. 7, pp. 2189–
2207, Jan. 2021.

[8] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards
automated reentrancy detection for smart contracts based on sequential
models,” IEEE Access, vol. 8, pp. 19 685–19 695, Jan. 2020.

[9] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1133–1144, Jan. 2020.

[10] Q.-B. Nguyen, A.-Q. Nguyen, V.-H. Nguyen, T. Nguyen-Le, and
K. Nguyen-An, “Detect abnormal behaviours in ethereum smart con-
tracts using attack vectors,” in International Conference on Future Data
and Security Engineering, Nha Trang City, Vietnam, Nov. 2019, pp.
485–505.

[11] N. Ivanov, Q. Yan, and A. Kompalli, “Txt: Real-time transaction
encapsulation for Ethereum smart contracts,” IEEE Transactions on
Information Forensics and Security, vol. 18, pp. 1141–1155, Jan. 2023.

[12] B. Lashkari and P. Musilek, “A comprehensive review of blockchain
consensus mechanisms,” IEEE Access, vol. 9, pp. 43 620–43 652, Mar.
2021.

[13] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” May
2020. [Online]. Available: https://arxiv.org/abs/2003.03052

[14] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys, vol. 53, no. 3, pp. 1–43, May 2021.

[15] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang,
and D. Mohaisen, “Exploring the attack surface of blockchain: A
comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 1977–2008, Mar. 2020.

[16] L. Hollander, “Evm bytecode decompiler,” Accessed: Feb. 10, 2023.
[Online]. Available: https://www.npmjs.com/package/evm

[17] W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural Computation, vol. 29,
no. 9, pp. 2352–2449, Aug. 2017.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[19] Y. M. Saputra, D. Nguyen, H. T. Dinh, Q.-V. Pham, E. Dutkiewicz, and
W.-J. Hwang, “Federated learning framework with straggling mitigation
and privacy-awareness for ai-based mobile application services,” IEEE
Transactions on Mobile Computing, May 2022.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, San
Diego, CA, USA, May 2015, pp. 1–15.

https://swcregistry.io
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://arxiv.org/abs/2003.03052
https://www.npmjs.com/package/evm

13

[21] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
Oct. 2016. [Online]. Available: https://arxiv.org/abs/1610.02527

[22] Ethereum, “Official Go implementation of the Ethereum protocol,”
Accessed: Nov. 18, 2022. [Online]. Available: https://github.com/
ethereum/go-ethereum/tree/v1.10.22

[23] Prysmatic Labs, “Prysm: An Ethereum Consensus Implementation
Written in Go,” Accessed: Jan. 10, 2023. [Online]. Available:
https://github.com/prysmaticlabs/prysm/tree/v3.2.0

[24] A. Said, M. U. Janjua, S.-U. Hassan, Z. Muzammal, T. Saleem,
T. Thaipisutikul, S. Tuarob, and R. Nawaz, “Detailed analysis of
ethereum network on transaction behavior, community structure and link
prediction,” PeerJ Computer Science, vol. 7, pp. 1–26, Dec. 2021.

[25] OpenZeppelin, “A library for secure smart contract development,”
Accessed: Sept. 18, 2022. [Online]. Available: https://github.com/
OpenZeppelin/openzeppelin-contracts

[26] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, June 2006.

[27] D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” Journal of Machine
Learning Technologies, pp. 37–63, Oct. 2011.

[28] Etherscan, “Ethereum daily transactions chart,” Accessed: Feb. 10, 2023.
[Online]. Available: https://etherscan.io/chart/tx

https://arxiv.org/abs/1610.02527
https://github.com/ethereum/go-ethereum/tree/v1.10.22
https://github.com/ethereum/go-ethereum/tree/v1.10.22
https://github.com/prysmaticlabs/prysm/tree/v3.2.0
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://etherscan.io/chart/tx

	Introduction
	Related work
	Blockchain System: Fundamental and Proposed Collaborative Learning framework
	Blockchain
	Designed Blockchain System and Our Proposed Collaborative Learning Framework

	Proposed Attack Detection framework
	Preprocessing Process
	Learning Process
	Collaborative learning Process

	Experiment and Performance Analysis
	Experiment Setup
	Dataset Collection
	Normal State
	Attack States

	Evaluation Methods
	Simulation and Experimental Results
	Preprocessing Analysis
	Accuracy Analysis
	Convergence Analysis
	Real-time Attack Detection
	Real-time Monitoring and Detection
	Processing Time

	Conclusion
	References

