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Abstract—Minimizing training overhead in channel estimation
is a crucial challenge in wireless communication systems. This
paper presents an extension of the traditional blind algorithm,
called “Mutually referenced equalizers” (MRE), specifically de-
signed for MIMO systems. Additionally, we propose a novel
semi-blind method, SB-MRE, which combines the benefits of
pilot-based and MRE approaches to achieve enhanced per-
formance while utilizing a reduced number of pilot symbols.
Moreover, the SB-MRE algorithm helps to minimize complexity
and training overhead and to remove the ambiguities inherent to
blind processing. The simulation results demonstrated that SB-
MRE outperforms other linear algorithms, i.e., MMSE, ZF, and
MRE, in terms of training overhead symbols and complexity,
thereby offering a promising solution to address the challenge of
minimizing training overhead in channel estimation for wireless
communication systems.

Index Terms—Channel estimation, semi-blind, MRE, MIMO.

I. INTRODUCTION

Multi-Input Multi-Output (MIMO) communication systems
play a vital role in achieving reliable high data rate transmis-
sion while improving spectrum efficiency and channel capac-
ity [1]. In order to mitigate channel distortions and separate
source signals, MIMO systems employ an increased number
of training sequences, usually referred to as pilots, which do
not carry any useful data. However, this leads to a decrease
in spectrum efficiency. In the 1990s, many studies proposed
‘blind’ (B) approach algorithms [2] to estimate the wireless
channel without any pilot symbol. However, blind methods
often have high complexity or require statistical information
that is not ready for real-world systems. After all, pilot-based
channel estimation techniques have dominated blind methods
up to now.

In recent years, there has been a growing interest in the
combination of pilot-based and blind methods, known as
‘semi-blind’ (SB) methods, which aim to reduce the number
of pilots while maintaining stable performance [3]. In this
work, we focus on the blind “Mutually referenced equalizers”
(MRE) [4] algorithm, which is fast, global convergence, and
flexible in implementation (i.e., Batch, LMS, RLS, . . . ). Since
1997, several studies have been proposed to develop the MRE
algorithm. [5] firstly proposed recursive least-squares (RLS)
implementation for the MRE method. In [6], Gesbert et al.
introduced the MIMO version of the MRE method. In 2000,
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J. van der Veen et al. [7] proposed the combination of MRE
with another blind algorithm, which is “Constant modulus”
(CMA) for SIMO systems. [8] also used MRE method for
SIMO models but reduced the complexity by computing only
2 instead of K equalizers as the original paper. Generally, most
of the studies reviewed above and others tried to develop the
MRE algorithm in the blind approach. As explained above,
they often have one or more drawbacks, e.g., lack of support
for MIMO; the need for intensive computational resources
when the number of equalizers is large; and the requirement
for several pieces of channel information, i.e., channel order
and delay between receivers.

This motivates us to propose the SB-MRE method, a semi-
blind approach for the MRE algorithm in MIMO systems.
In detail, a few pilot symbols are used to improve the
performance of the B-MRE component. To further enhance
its effectiveness, we aim to reduce the overall cost of the
SB-MRE method through two key improvements. Firstly, we
decrease the complexity of the B-MRE component by reducing
the number of equalizers to just 2. Secondly, we employ a
straightforward adaptive algorithm that effectively minimizes
the number of pilot symbols required in the SB-MRE method.

Our contribution in this paper is to propose an effective
SB-MRE method for MIMO systems. The system model and
B-MRE algorithm for MIMO systems are presented in sec-
tion II. The novel SB-MRE algorithm is shown in section III.
Two methods to reduce the cost of SB-MRE are presented
in section IV. At last, we conduct numerical experiments
to compare the performance of SB-MRE with other linear
estimation methods.

Notations: X⊤ Transpose matrix of X.
XH Hermitian matrix of X.
IK Indentity matrix of shape K.
⊗ Kronecker product operator.
E() Statistical expectation.
0 Matrix of zeros.

II. MIMO-MRE

This section introduces the mathematical model of MIMO
wireless communications used in this work. After that, the
MRE algorithm for the MIMO model is briefly reviewed.

A. System model

The MIMO model, illustrated in Fig. 1, is composed of
T transmitters and L receivers. Each channel between t-
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Fig. 1: Conventional MIMO communication model.

th transmitter and l-th receiver is formulated as a M + 1
coefficients vector. At a time, N received symbols are simul-
taneously captured on each receiver. At time n, the following
equation expresses the system model.

x(n) =

T−1∑
t=0

Htst(n) +wt, (1)

where st(n) ∈ CM+N×1 is the transmit symbols from the t-th
transmitter. Ht is the channel convolution matrix between t-th
transmitter and L receivers. Ht ∈ CLN×K is assumed to be
a full column rank (K = M + N ) matrix. x(n) ∈ CLN×1

denotes the observed signals and wt ∈ CLN×1 stands for
additive white Gaussian noise matrix. Assume that channel
and additive noise between each channel are i.i.d and have
distributed CN (0, σ2

Ht
I) and CN (0, σ2I), respectively.

st(n) = [st(n), st(n− 1), . . . , st(n−K + 1)]⊤,

Ht=

K
←→

h
(0)
t,0 · · · h

(0)
t,M 0 · · · 0

... · · ·
. . . · · ·

. . . 0

0 · · · 0 h
(0)
t,0 · · · h

(0)
t,M

... · · ·
... · · · · · ·

...
h
(L−1)
t,0 · · · h

(L−1)
t,M 0 · · · 0

... · · ·
. . . · · ·

. . . 0

0 · · · 0 h
(L−1)
t,0 · · · h

(L−1)
t,M



xyLN,

x(n) =
[
x(0)(n), · · · ,x(0)(n−N + 1), · · · ,

x(L−1)(n), · · · , x(L−1)(n−N + 1)
]⊤

.

B. Brief review of MRE method

Generally, MRE uses an N -taps linear equalizer to filter
each channel. Let gt,i ∈ CLN×1 be an i-delay equalizer and
t-th transmitter. For each transmitter, the number of equalizers

equals the maximum delay, which is K. For i = 0, . . . ,K − 1,
at time n, we have

gH
t,i ∗ x(n) =

L−1∑
l=0

N−1∑
k=0

gHt,i(k)x
(l)(n− k) ≈ st(n− i), (2)

gt,i =
[
g
(0)
t,i (0), . . . ,g

(0)
t,i (N − 1), . . . ,

g
(L−1)
t,i (0), . . . , g

(L−1)
t,i (N − 1)

]⊤
.

(3)

The equalizers matrix for t-th transmitter is Gt ∈ CLN×K as
follows:

Gt = [gt,0, . . . ,gt,K−1]. (4)

In the noise-free case, the transmitted symbols can be
perfectly recovered with Ḡ is any left inverse of H since

[G0, . . . ,GT−1]
Hx(n) = [s⊤0 (n), . . . , s

⊤
T−1(n)]

⊤,

ḠHx(n) = s̄(n).
(5)

In noisy case, to estimate Ḡ, the MRE method exploits the
delay diversity from multi-channel, gH

i x(n) = gH
i+1x(n+ 1),

to determine the full set of channel inverses. Where g is the
vector form of Ḡ equalizers matrix as shown in Eq. (12). The
unconstrained MRE cost function of Ḡ is given by:

J (Ḡ) = gHRg, (6)

where R ∈ CLNKT×LNKT is the matrix of x(n) and x(n+1)
observed signals, which is given by:

R def
= E

(
UHU

)
, (7)

with

U =
(
IT (K−1),0

)
⊗xH(n)−

(
0, IT (K−1)

)
⊗xH(n+1). (8)

Under the quadratic constraint [4], the unique stable minimum
of g is estimated by selecting the smallest eigenvector of R.

III. PROPOSE SB-MRE

In t-th transmitter, a block data st is considered to send,
including Np pilot symbols and Ns −Np data symbols.

st(n) = [st(n), . . . ,st (n−Np + 1) ,

st (n−Np) , . . . , st (n−Ns + 1)]⊤.
(9)

Pilot signals estimate the full set of channel inverse by the
least-square method.

Ĝ = arg min
Ḡ∈CLN×KT

Np−1∑
i=N−1

∥s̄(n)− ḠHx(n)∥2F . (10)

The combining of pilot-based and blind MRE is a con-
strained optimization that can readily solve by the Lagrange
multiplier method [9]. The total cost function of SB-MRE will
be

J (Ḡ) =

Np−1∑
i=N−1

∥s̄(n)− ḠHx(n)∥2F + λgHRg, (11)



with λ is a weighting factor, R in the quadratic form of the
blind MRE criterion as shown in Eq. (7), and g is the vector
form of Ḡ.

g = vec(Ḡ) =
[
G⃗⊤

0 , G⃗
⊤
1 , . . . , G⃗

⊤
K−1

]⊤
,

G⃗i =
[
g⊤
0,i,g

⊤
1,i, . . . ,g

⊤
T−1,i

]⊤
.

(12)

Without loss of generality, the least-square expression of
Eq. (11) is conjugate transposed and the sum operator is turned
into matrix forms of S̃ and X̃. The cost function is expressed
as follows:

J (Ḡ) =

Np−1∑
i=N−1

∥∥s̄H(n)− xH(n)Ḡ
∥∥2
F
+ λgHRg

=
∥∥∥S̃H − X̃HḠ

∥∥∥2
F
+ λgHRg.

(13)

where S̃, X̃ are the matrices of shape CKT×(Np−N+1) and
CLN×(Np−N+1), respectively.

S̃ = [s̄(N − 1), . . . , s̄ (Np − 1)],

X̃ = [x(N − 1), . . . ,x (Np − 1)].

The least-square expression is vectorized and thanks to the
property for vector, i.e., vec(AXB) = (B⊤ ⊗A) ∗ vec(X).
The SB-MRE cost function turned into

J (g) =
∥∥∥vec(S̃H)− (IKT ⊗ X̃H) vec(Ḡ)

∥∥∥2
F
+ λgHRg

= ∥s̄−Ag∥2F + λgHRg
= gHAHAg + ∥s̄∥2F − 2ℜ(gHAH s̄) + λgHRg.

(14)
In order to find minimum cost of Eq. (14), let derivative

J (g) with respect to g as follows:

∂J
∂g

(g) = 0,(
AHA+ λR

)
g = AH s̄.

(15)

The final equalizers matrix in vector form of the proposed
SB-MRE method is obtained through

gSB =
(
AHA+ λR

)−1
AH s̄. (16)

IV. REDUCE THE COST

In the ensuing, we aim to reduce the cost of the proposed
SB-MRE algorithm by addressing two key factors, i.e., reduc-
ing the complexity of the B-MRE component and minimizing
the training overhead.

A. Reducing the complexity of the B-MRE part

In the original study, the overall complexity of the blind
MRE method isO(LNKT ) [4]. Although all K equalizers are
estimated for each transmitter, only one is ultimately utilized.
However, this computational burden becomes unnecessary as
N increases. Hence, in this section, we first considerably
reduce the number of equalizers to 2, i.e., the 0-th and
(K − 1)-th equalizers. As a result, the overall complexity is

reduced to O(LNT ) and the equalizer matrix for the t-th
transmitter can be represented as follows:

Vt = [gt,0, gt,K−1]. (17)

Followed by the estimated signal source of t-th transmitter
will be

VH
t x(n) = [st(n), st(n−K + 1)]⊤ = st(n). (18)

Following that, we do not have to compute the full rank of R
as the blind approach. Eq. (8) is modified to

U = (IT ,0)⊗ xH(n)− (0, IT )⊗ xH(n+K − 1).

B. Reducing the training overhead for SB-MRE

In the least-square method, as indicated in Eq. (10), the
performance of SB-MRE is primarily influenced by the num-
ber of pilot symbols (Np). However, increasing the number
of pilot symbols results in a decrease in spectral efficiency.
To address this issue, we propose an adaptive algorithm that
determines the minimum number of pilots required for the
SB-MRE method.

First, we establish an assumption that after a few trans-
mission sessions, the user equipment (UE) provides feedback
to the base station (BTS) regarding the average symbol error
rate (SER). This assumption is inspired by the feedback of
the block error rate (BLER) in 5G standards [10]. Second,
taking into account the channel state information (CSI), UE
characteristics, and the specific service requirements, a target
SER value (T ) is determined for a given transmission period.
Subsequently, we define a straightforward loss function that
measures the deviation from the target SER value as follows:

L(SER) = log10(SER)− log10(T ). (19)

The updating formula for the number of pilots Np is

Np = Np + δ ∗ L(SER), (20)

where δ is the learning rate.

Initially, the parameter δ is set to 1. If the feedback SER has
not yet reached the target SER (T ), δ = δ1. However, once
the target SER is satisfied, the number of pilots is reduced
to improve data efficiency, and during this phase, δ remains
fixed at 1. The algorithm 1 shows our method to adapt the
number of pilot symbols for SB-MRE. This approach can be
seen as following a multiplicative-increase additive-decrease
algorithm for adjusting the number of pilots. The reverse
version, additive-increase multiplicative-decrease (AIMD), has
been successfully adopted in networking, particularly the TCP
congestion control algorithm [11]. Moreover, this scheme has
been observed in nature, employed by biological systems, and
even adapted for neural circuits [12].



Algorithm 1 Adaptive number of pilot symbols for SB-MRE.
Input: T , δ1,SER
Output: Np

1: Np ← N
2: while true do
3: SER = SB-MRE(Np)
4: L(SER) = log10(SER)− log10(T )
5: if L(SER) < 0 then
6: δ = 1
7: else
8: δ = δ1
9: end if

10: Np = Np + δ ∗ L(SER)
11: end while

V. SIMULATION RESULTS

In this section, we present the experimental analysis of the
proposed SB-MRE method using the simulation parameters
outlined in Table I. The simulation results are based on an aver-
age of 500,000 runs. We begin by comparing the performance
of the SB-MRE method against traditional channel estimation
algorithms, namely Zero Forcing (ZF) and Minimum Mean
Square Error (MMSE) [13], in terms of SER.

Fig. 2 shows that ZF and MMSE outperform the proposed
SB-MRE at lower signal-to-noise ratio (SNR) values. This
can be attributed to the fact that the influence of the B-MRE
component is negligible at low SNR levels. However, as the
SNR increases, the proposed SB-MRE gradually catches up
to the SER of ZF and MMSE, eventually surpassing them
at SNR = 10dB. It is important to note that the proposed
SB-MRE algorithm only utilizes 32/256 symbols for pilots,
whereas ZF and MMSE require complete knowledge of the
CSI. Furthermore, even after reducing the cost of the B-
MRE component, the modified SB-MRE (SB-MRE rc) still
outperforms both the original B-MRE and B-MRE rc in terms
of SER. This highlights the effectiveness of the proposed
modifications in enhancing the performance of the SB-MRE
algorithm.

TABLE I: Simulation parameters

Parameters Specifications
MIMO T = 2, L = 4
Modulation QPSK
Channel order M = 3
Windows size N = 10
Sample size Ns = 256
Pilots Np = 32
Number of blind equalizers 2
Weighting factor λ = 0.1
Increase rate of Np δ1 = 2
Target SER T = 10−4, T rc = 10−2

After that, we simulate to verify the performance of the
proposed SB-MRE in different numbers of pilots (Np) and
SNR values. As shown in Fig. 3, Np and SNR are turned in the
range of [10 64] pilot symbols and [5, 10, 15] dB, respectively.
Overall, SER curves of both SB-MRE and SB-MRE rc exhibit
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Fig. 2: Performance of proposed SB-MRE versus other chan-
nel estimation algorithms.

a gradual decrease as the number of pilot symbols (Np) and
SNR increase. This behavior represents a trade-off between
spectrum efficiency and the accuracy of the channel estimation
algorithm. At SNR = 15 dB, SB-MRE with Np > 40 archives
to SER ≈ 10−6. In the case of SB-MRE rc, when the number
of pilot symbols (Np) is increased within the range of 10
to 40, there is a clear improvement in the SER curves. The
SER decreases noticeably with an increasing number of pilots,
indicating better performance. However, once Np exceeds 40,
the SER curves reach a stable state, and there is little to no
further reduction in SER.
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Fig. 3: Performance of proposed SB-MRE under various Np

and SNR values.

Fig. 4 demonstrates the impact of the weighting factor (λ)
on the combination of pilot-based and B-MRE. The λ is varied



within the range of [0.01 0.2]. For lower SNR levels (i.e., 5 dB
and 10 dB), we observed a slight reduction in SER curves as λ
values increased. However, at SNR = 15 dB, the performance
of the B-MRE component became prominent, resulting in a
significant decrease in the SER curves of SB-MRE. On the
other hand, impacts of the weighting factor are negligible in
the SB-MRE rc version due to the small number of blind
equalizers employed.
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Fig. 4: Performance of proposed SB-MRE under various λ
and SNR values.

Finally, the algorithm’s performance to reduce the training
overhead for SB-MRE is shown in Fig. 5. At SNR = 12 dB,
the weighting factor (λ) is set at two levels, i.e., 0.1 and
0.15. According to simulation results in Fig. 3, the target
SERs of SB-MRE, SB-MRE rc are fixed at 10−4 and 10−2,
respectively. Overall, all scenarios’ SER curves converge to
their target SER after a certain number of iterations. How-
ever, the number of pilot symbols and iterations required for
convergence vary significantly. For λ = 0.1, SB-MRE and SB-
MRE rc require 51 and 131 pilot symbols, along with 20 and
70 iterations, respectively. Conversely, for λ = 0.15, SB-MRE
and SB-MRE rc only need 13 and 15 pilot symbols, along
with 1 and 5 iterations, respectively. These results highlight
the effectiveness of the adaptive number of pilot symbols
method for SB-MRE, with the λ value playing a crucial
role in enhancing the performance of the SB-MRE algorithm,
especially in high SNR scenarios.

VI. CONCLUSION

In this paper, we proposed a semi-blind version of the
mutually referenced equalizers (MRE) algorithm designed
for MIMO systems. Our algorithm uses a small number of
pilot symbols to enhance the performance of the B-MRE.
Furthermore, the SB-MRE algorithm also reduces the number
of blind equalizers and pilot symbols required. Simulation
results demonstrate that SB-MRE outperforms other B-MRE
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Fig. 5: Adapt the number of pilot symbols method
for SB-MRE. The simulation parameters are
T = 10−4, T rc = 10−2, and SNR = 12 dB.

approaches and linear methods, particularly in high SNR
scenarios. Additionally, we analyze the impact of the blind
component and highlight the effectiveness of adapting the
number of pilot symbols.
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